Evolutionary Robotics

Evolutionary Robotics

Author: Stefano Nolfi

Publisher: MIT Press

Published: 2000

Total Pages: 338

ISBN-13: 9780262140706

DOWNLOAD EBOOK

An overview of the basic concepts and methodologies of evolutionary robotics, which views robots as autonomous artificial organisms that develop their own skills in close interaction with the environment and without human intervention.


Mobile Robots: The Evolutionary Approach

Mobile Robots: The Evolutionary Approach

Author: Nadia Nedjah

Publisher: Springer Science & Business Media

Published: 2007-03-08

Total Pages: 238

ISBN-13: 3540497196

DOWNLOAD EBOOK

Researchers have obtained robots that display an amazing slew of behaviors and perform a multitude of tasks, including perception of environment, negotiating rough terrain, and pushing boxes. This volume offers a wide spectrum of sample works developed in leading research throughout the world about evolutionary mobile robotics and demonstrates the success of the technique in evolving efficient and capable mobile robots.


Evolutionary Robotics

Evolutionary Robotics

Author: Lingfeng Wang

Publisher: World Scientific

Published: 2006

Total Pages: 267

ISBN-13: 9812773142

DOWNLOAD EBOOK

This invaluable book comprehensively describes evolutionary robotics and computational intelligence, and how different computational intelligence techniques are applied to robotic system design. It embraces the most widely used evolutionary approaches with their merits and drawbacks, presents some related experiments for robotic behavior evolution and the results achieved, and shows promising future research directions. Clarity of explanation is emphasized such that a modest knowledge of basic evolutionary computation, digital circuits and engineering design will suffice for a thorough understanding of the material. The book is ideally suited to computer scientists, practitioners and researchers keen on computational intelligence techniques, especially the evolutionary algorithms in autonomous robotics at both the hardware and software levels. Sample Chapter(s). Chapter 1: Artificial Evolution Based Autonomous Robot Navigation (184 KB). Contents: Artificial Evolution Based Autonomous Robot Navigation; Evolvable Hardware in Evolutionary Robotics; FPGA-Based Autonomous Robot Navigation via Intrinsic Evolution; Intelligent Sensor Fusion and Learning for Autonomous Robot Navigation; Task-Oriented Developmental Learning for Humanoid Robots; Bipedal Walking Through Reinforcement Learning; Swing Time Generation for Bipedal Walking Control Using GA Tuned Fuzzy Logic Controller; Bipedal Walking: Stance Ankle Behavior Optimization Using Genetic Algorithm. Readership: Researchers in evolutionary robotics, and graduate and advanced undergraduate students in computational intelligence.


Deep Learning for Robot Perception and Cognition

Deep Learning for Robot Perception and Cognition

Author: Alexandros Iosifidis

Publisher: Academic Press

Published: 2022-02-04

Total Pages: 638

ISBN-13: 0323885721

DOWNLOAD EBOOK

Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis


Evolutionary Approach to Machine Learning and Deep Neural Networks

Evolutionary Approach to Machine Learning and Deep Neural Networks

Author: Hitoshi Iba

Publisher: Springer

Published: 2018-06-15

Total Pages: 254

ISBN-13: 9811302006

DOWNLOAD EBOOK

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields. Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution. The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.


Evolutionary Humanoid Robotics

Evolutionary Humanoid Robotics

Author: Malachy Eaton

Publisher: Springer

Published: 2015-02-02

Total Pages: 151

ISBN-13: 3662445999

DOWNLOAD EBOOK

This book examines how two distinct strands of research on autonomous robots, evolutionary robotics and humanoid robot research, are converging. The book will be valuable for researchers and postgraduate students working in the areas of evolutionary robotics and bio-inspired computing.


Behavior-based Robotics

Behavior-based Robotics

Author: Ronald C. Arkin

Publisher: MIT Press

Published: 1998

Total Pages: 522

ISBN-13: 9780262011655

DOWNLOAD EBOOK

Foreword by Michael Arbib This introduction to the principles, design, and practice of intelligent behavior-based autonomous robotic systems is the first true survey of this robotics field. The author presents the tools and techniques central to the development of this class of systems in a clear and thorough manner. Following a discussion of the relevant biological and psychological models of behavior, he covers the use of knowledge and learning in autonomous robots, behavior-based and hybrid robot architectures, modular perception, robot colonies, and future trends in robot intelligence. The text throughout refers to actual implemented robots and includes many pictures and descriptions of hardware, making it clear that these are not abstract simulations, but real machines capable of perception, cognition, and action.


Learning Robots

Learning Robots

Author: Andreas Birk

Publisher: Springer

Published: 2003-06-26

Total Pages: 197

ISBN-13: 3540492402

DOWNLOAD EBOOK

Robot learning is a broad and interdisciplinary area. This holds with regard to the basic interests and the scienti c background of the researchers involved, as well as with regard to the techniques and approaches used. The interests that motivate the researchers in this eld range from fundamental research issues, such as how to constructively understand intelligence, to purely application o- ented work, such as the exploitation of learning techniques for industrial robotics. Given this broad scope of interests, it is not surprising that, although AI and robotics are usually the core of the robot learning eld, disciplines like cog- tive science, mathematics, social sciences, neuroscience, biology, and electrical engineering have also begun to play a role in it. In this way, its interdisciplinary character is more than a mere fashion, and leads to a productive exchange of ideas. One of the aims of EWLR-6 was to foster this exchange of ideas and to f- ther boost contacts between the di erent scienti c areas involved in learning robots. EWLR is, traditionally, a \European Workshop on Learning Robots". Nevertheless, the organizers of EWLR-6 decided to open up the workshop to non-European research as well, and included in the program committee we- known non-European researchers. This strategy proved to be successful since there was a strong participation in the workshop from researchers outside - rope, especially from Japan, which provided new ideas and lead to new contacts.


Symbiotic Multi-Robot Organisms

Symbiotic Multi-Robot Organisms

Author: Paul Levi

Publisher: Springer Science & Business Media

Published: 2010-05-18

Total Pages: 486

ISBN-13: 3642116922

DOWNLOAD EBOOK

This book examines the evolution of self-organised multicellular structures, and the remarkable transition from unicellular to multicellular life. It shows the way forward in developing new robotic entities that are versatile, cooperative and self-configuring.


Evolutionary Swarm Robotics

Evolutionary Swarm Robotics

Author: Vito Trianni

Publisher: Springer Science & Business Media

Published: 2008-05-30

Total Pages: 192

ISBN-13: 3540776117

DOWNLOAD EBOOK

In this book the use of ER techniques for the design of self-organising group behaviours, for both simulated and real robots is introduced. The book tries to mediate between two apparently opposed perspectives: engineering and cognitive science. The experiments presented in the book and the results obtained contribute to the assessment of ER not only as a design tool, but also as a methodology for modelling and understanding intelligent adaptive behaviours.