An Efficient Numerical Scheme for Simulating Unidirectional Irregular Waves Based on a Hybrid Wave Model

An Efficient Numerical Scheme for Simulating Unidirectional Irregular Waves Based on a Hybrid Wave Model

Author: Dongxing Jia

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The Unidirectional Hybrid Wave Model (UHWM) predicts irregular wave kinematics and pressure accurately in comparison with its linear counterpart and modification, especially near the free surface. Hence, in using the Morrison equation it has been employed in the computation of wave loads on a moored floating structure, such as Spar or TLP (Tension Leg Platform), which can be approximated by a slender body or a number of slender components. Dr. Jun Zhang, with his former and current graduate students, have developed a numerical code, known as COUPLE, over the past two decades, simulating 6 Degree Of Freedom (DOF) motions of a moored floating structures interacting with waves, current and wind. COUPLE employs UHWM as a module for computing wave loads on a floating structure. However, when the duration of simulating the wave-structure interaction is long, say 3 hours (typically required by the offshore industry for extreme storm cases), the computation time of using UHWM increases significantly in comparisons with the counterpart based upon linear wave theory. This study is to develop a numerical scheme which may significantly reduce the CPU time in the use of UHWM and COUPLE. In simulating irregular (or random) waves following a JONSWAP spectrum of a given cut off frequency, the number of free wave components in general grows linearly with the increase of the simulation duration. The CPU time for using a linear spectral method to simulate irregular waves is roughly proportion to N2, where N is the number of free wave components used in simulating irregular waves, while that for using a nonlinear wave model, such as UHWM, it is roughly proportional to N3. Therefore, to reduce the CPU time, the total simulation duration is divided into a number of segments. However, due to the nature of Fast Fourier Transform (FFT), the connection between the two neighboring surface elevations segments is likely discontinuous. To avoid the discontinuity, an overlapped duration between the two neighboring segments is adopted. For demonstration, a free-wave spectrum is input to COUPLE for simulating the 6 DOF motions of a floating 5-MW wind turbine installed on an OC3 moored Spar and tensions in the mooring lines. It is shown that the CPU time for the above simulation for duration of 2048 seconds is reduced from more than16 hours when the irregular wave elevation and kinematics are calculated without dividing into segments to less than three hours when those are calculated by dividing into five segments. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148395


Advances in Numerical Simulation of Nonlinear Water Waves

Advances in Numerical Simulation of Nonlinear Water Waves

Author: Qingwei Ma

Publisher: World Scientific

Published: 2010

Total Pages: 700

ISBN-13: 9812836500

DOWNLOAD EBOOK

Ch. 1. Model for fully nonlinear ocean wave simulations derived using Fourier inversion of integral equations in 3D / J. Grue and D. Fructus -- ch. 2. Two-dimensional direct numerical simulations of the dynamics of rogue waves under wind action / J. Touboul and C. Kharif -- ch. 3. Progress in fully nonlinear potential flow modeling of 3D extreme ocean waves / S.T. Grilli [und weitere] -- ch. 4. Time domain simulation of nonlinear water waves using spectral methods / F. Bonnefoy [und weitere] -- ch. 5. QALE-FEM method and its application to the simulation of free-responses of floating bodies and overturning waves / Q.W. Ma and S. Yan -- ch. 6. Velocity calculation methods in finite element based MEL formulation / V. Sriram, S.A. Sannasiraj and V. Sundar -- ch. 7. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water / P.A. Madsen and D.R. Fuhrman -- ch. 8. Inter-comparisons of different forms of higher-order Boussinesq equations / Z.L. Zou, K.Z. Fang and Z.B. Liu -- ch. 9. Method of fundamental solutions for fully nonlinear water waves / D.-L. Young, N.-J. Wu and T.-K. Tsay -- ch. 10. Application of the finite volume method to the simulation of nonlinear water waves / D. Greaves -- ch. 11. Developments in multi-fluid finite volume free surface capturing method / D.M. Causon, C.G. Mingham and L. Qian -- ch. 12. Numerical computation methods for strongly nonlinear wave-body interactions / M. Kashiwagi, C. Hu and M. Sueyoshi -- ch. 13. Smoothed particle hydrodynamics for water waves / R.A. Dalrymple [und weitere] -- ch. 14. Modelling nonlinear water waves with RANS and LES SPH models / R. Issa [und weitere] -- ch. 15. MLPG_R method and Its application to various nonlinear water waves / Q.W. Ma -- ch. 16. Large Eddy simulation of the hydrodynamics generated by breaking waves / P. Lubin and J.-P. Caltagirone -- ch. 17. Recent advances in turbulence modeling for unsteady breaking waves / Q. Zhao and S.W. Armfield -- ch. 18. Freak waves and their interaction with ships and offshore structures / G.F. Clauss


Ships and Offshore Structures XIX

Ships and Offshore Structures XIX

Author: Carlos Guedes Soares

Publisher: CRC Press

Published: 2015-09-03

Total Pages: 976

ISBN-13: 1315647192

DOWNLOAD EBOOK

This three-volume work presents the proceedings from the 19th International Ship and Offshore Structures Congress held in Cascais, Portugal on 7th to 10th September 2015. The International Ship and Offshore Structures Congress (ISSC) is a forum for the exchange of information by experts undertaking and applying marine structural research.The aim of


Numerical Methods for Fluid Dynamics

Numerical Methods for Fluid Dynamics

Author: Dale R. Durran

Publisher: Springer Science & Business Media

Published: 2010-09-14

Total Pages: 527

ISBN-13: 1441964126

DOWNLOAD EBOOK

This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean


Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Author: Seon Ki Park

Publisher: Springer Science & Business Media

Published: 2013-05-22

Total Pages: 736

ISBN-13: 3642350887

DOWNLOAD EBOOK

This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.