Model Uncertainties in Foundation Design

Model Uncertainties in Foundation Design

Author: Chong Tang

Publisher: CRC Press

Published: 2021-03-16

Total Pages: 589

ISBN-13: 0429658397

DOWNLOAD EBOOK

Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.


Foundation Engineering in the Face of Uncertainty

Foundation Engineering in the Face of Uncertainty

Author: Fred H. Kulhawy

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9780784412763

DOWNLOAD EBOOK

WIDTH: 405pt; BORDER-COLLAPSE: collapse border=0 cellSpacing=0 cellPadding=0 width=540> WIDTH: 405pt; mso-width-source: userset; mso-width-alt: 19748 width=540> HEIGHT: 31.5pt height=42> BORDER-BOTTOM: #f0f0f0; BORDER-LEFT: #f0f0f0; BACKGROUND-COLOR: transparent; WIDTH: 405pt; HEIGHT: 31.5pt; BORDER-TOP: #f0f0f0; BORDER-RIGHT: #f0f0f0 class=xl65 height=42 width=540>GSP 229 contains 54 papers on risk and uncertainty in foundation engineering presented in honor of Fred H. Kulhawy.


Drilled Shaft Manual: Construction procedures and design for axial loading

Drilled Shaft Manual: Construction procedures and design for axial loading

Author: Lymon C. Reese

Publisher:

Published: 1977

Total Pages: 152

ISBN-13:

DOWNLOAD EBOOK

Drilled shafts have been used on a limited scale for many years as an alternative to driven piles in a variety of foundation problems. However, uncertainty about the behavior of the drilled shaft has forestalled widespread adoption. The subject package, by Dr. Lymon C. Reese of the University of Texas, is intended for use by bridge engineers, geotechnical engineers, and builders of pile foundations. The manual contains rational procedures and practical guidelines for the design and construction of drilled shaft foundations. Volume I presents a rational design procedure for drilled shafts under axial loading and includes guidelines on construction methods, inspection, load testing, specifications, and cost estimates. Volume II presents alternative methods for computing the response of the shaft to lateral loading and presents the structural design of the shaft for axial and/or lateral loading.


Limit State Design In Geotechnical Engineering Practice, Proceedings Of The International Workshop Lsd2003 (With Cd-rom)

Limit State Design In Geotechnical Engineering Practice, Proceedings Of The International Workshop Lsd2003 (With Cd-rom)

Author: Kok Kwang Phoon

Publisher: World Scientific

Published: 2003-12-19

Total Pages: 55

ISBN-13: 9814483044

DOWNLOAD EBOOK

This publication contains the abstracts of 20 papers, the majority of which were presented at the International Workshop on Limit State Design in Geotechnical Engineering Practice (LSD2003). The complete contributions are available in the accompanying CD-ROM (special lecture not included). The topics covered include: performance-based and limit state design philosophies; issues arising from the implementation of limit state design codes; elaborations of “measured values”, “derived values” and “characteristic values”; reliability-based methodologies for analytical calibration of partial factors; and application of partial factors in FEM where highly nonlinear force-deformation behaviors may govern.


Model Uncertainties in Foundation Design

Model Uncertainties in Foundation Design

Author: Chong Tang

Publisher: CRC Press

Published: 2021-03-17

Total Pages: 497

ISBN-13: 0429655959

DOWNLOAD EBOOK

Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.