There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach—that is, to incorporate prior knowledge when reasoning with incomplete information—in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data—and how to fix it.
Mathematics for Social Justice offers a collection of resources for mathematics faculty interested in incorporating questions of social justice into their classrooms. The book begins with a series of essays from instructors experienced in integrating social justice themes into their pedagogy; these essays contain political and pedagogical motivations as well as nuts-and-bolts teaching advice. The heart of the book is a collection of fourteen classroom-tested modules featuring ready-to-use activities and investigations for the college mathematics classroom. The mathematical tools and techniques used are relevant to a wide variety of courses including college algebra, math for the liberal arts, calculus, differential equations, discrete mathematics, geometry, financial mathematics, and combinatorics. The social justice themes include human trafficking, income inequality, environmental justice, gerrymandering, voting methods, and access to education. The volume editors are leaders of the national movement to include social justice material into mathematics teaching. Gizem Karaali is Associate Professor of Mathematics at Pomona College. She is one of the founding editors of The Journal of Humanistic Mathematics, and an associate editor for The Mathematical Intelligencer and Numeracy ; she also serves on the editorial board of the MAA's Carus Mathematical Monographs. Lily Khadjavi is Associate Professor of Mathematics at Loyola Marymount University and is a past co-chair of the Infinite Possibilities Conference. She has served on the boards of Building Diversity in Science, the Barbara Jordan-Bayard Rustin Coalition, and the Harvard Gender and Sexuality Caucus.
This edition, updated by Arlene O'Sean and Antoinette Schleyer of the American Mathematical Society, brings Ms. Swanson's work up to date, reflecting the more technical reality of publishing today. While it includes information for copy editors, proofreaders, and production staff to do a thorough, traditional copyediting and proofreading of a manuscript and proof copy, it is increasingly more useful to authors, who have become intricately involved with the typesetting of their manuscripts.
"This book is the result of a study in which the authors identified all of the American women who earned PhD's in mathematics before 1940, and collected extensive biographical and bibliographical information about each of them. By reconstructing as complete a picture as possible of this group of women, Green and LaDuke reveal insights into the larger scientific and cultural communities in which they lived and worked." "The book contains an extended introductory essay, as well as biographical entries for each of the 228 women in the study. The authors examine family backgrounds, education, careers, and other professional activities. They show that there were many more women earning PhD's in mathematics before 1940 than is commonly thought." "The material will be of interest to researchers, teachers, and students in mathematics, history of mathematics, history of science, women's studies, and sociology."--BOOK JACKET.
This book is for anyone who wishes to illustrate their mathematical ideas, which in our experience means everyone. It is organized by material, rather than by subject area, and purposefully emphasizes the process of creating things, including discussions of failures that occurred along the way. As a result, the reader can learn from the experiences of those who came before, and will be inspired to create their own illustrations. Topics illustrated within include prime numbers, fractals, the Klein bottle, Borromean rings, tilings, space-filling curves, knot theory, billiards, complex dynamics, algebraic surfaces, groups and prime ideals, the Riemann zeta function, quadratic fields, hyperbolic space, and hyperbolic 3-manifolds. Everyone who opens this book should find a type of mathematics with which they identify. Each contributor explains the mathematics behind their illustration at an accessible level, so that all readers can appreciate the beauty of both the object itself and the mathematics behind it.
Part of the A Century of Mathematics in America collection, this book contains articles that describe the mathematics and the mathematical personalities in some of the nations' prominent departments: Johns Hopkins, Clark, Columbia, MIT, Michigan, Texas, and the Institute for Advanced Study.
This book contains entirely new results, not to be found elsewhere. Furthermore, additional results scattered elsewhere in the literature are clearly presented. Several well-known distributions such as Weibull distributions, exponentiated Burr type XII distributions and exponentiated exponential distributions and their properties are demonstrated. Analysis of real as well as well-simulated data are analyzed. A number of inferences based on a finite mixture of distributions are also presented.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.