Discover coding with Blockly with the help of friends from Frozen. Step-by-step instructions guide readers through exercises to teach sequencing, debugging, and more. Readers can try out the skills they learn in a code.org companion site--
"A simple, low-level, unplugged introduction to coding designed for young readers not yet ready for coding on computers. Beloved Disney characters draw in readers new to coding concepts"--
The definitive guide to problem-solving in the design of communications systems In Algorithms for Communications Systems and their Applications, 2nd Edition, authors Benvenuto, Cherubini, and Tomasin have delivered the ultimate and practical guide to applying algorithms in communications systems. Written for researchers and professionals in the areas of digital communications, signal processing, and computer engineering, Algorithms for Communications Systems presents algorithmic and computational procedures within communications systems that overcome a wide range of problems facing system designers. New material in this fully updated edition includes: MIMO systems (Space-time block coding/Spatial multiplexing /Beamforming and interference management/Channel Estimation) OFDM and SC-FDMA (Synchronization/Resource allocation (bit and power loading)/Filtered OFDM) Improved radio channel model (Doppler and shadowing/mmWave) Polar codes (including practical decoding methods) 5G systems (New Radio architecture/initial access for mmWave/physical channels) The book retains the essential coding and signal processing theoretical and operative elements expected from a classic text, further adopting the new radio of 5G systems as a case study to create the definitive guide to modern communications systems.
The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing , structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis.
Computational complexity is one of the most beautiful fields of modern mathematics, and it is increasingly relevant to other sciences ranging from physics to biology. But this beauty is often buried underneath layers of unnecessary formalism, and exciting recent results like interactive proofs, phase transitions, and quantum computing are usually considered too advanced for the typical student. This book bridges these gaps by explaining the deep ideas of theoretical computer science in a clear and enjoyable fashion, making them accessible to non-computer scientists and to computer scientists who finally want to appreciate their field from a new point of view. The authors start with a lucid and playful explanation of the P vs. NP problem, explaining why it is so fundamental, and so hard to resolve. They then lead the reader through the complexity of mazes and games; optimization in theory and practice; randomized algorithms, interactive proofs, and pseudorandomness; Markov chains and phase transitions; and the outer reaches of quantum computing. At every turn, they use a minimum of formalism, providing explanations that are both deep and accessible. The book is intended for graduate and undergraduate students, scientists from other areas who have long wanted to understand this subject, and experts who want to fall in love with this field all over again.
Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries Key FeaturesLearn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasksUnderstand and develop model-free and model-based algorithms for building self-learning agentsWork with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategiesBook Description Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community. What you will learnDevelop an agent to play CartPole using the OpenAI Gym interfaceDiscover the model-based reinforcement learning paradigmSolve the Frozen Lake problem with dynamic programmingExplore Q-learning and SARSA with a view to playing a taxi gameApply Deep Q-Networks (DQNs) to Atari games using GymStudy policy gradient algorithms, including Actor-Critic and REINFORCEUnderstand and apply PPO and TRPO in continuous locomotion environmentsGet to grips with evolution strategies for solving the lunar lander problemWho this book is for If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You’ll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.
This welcome second edition to the 2002 original presents the logical arithmetical or computational procedures within communications systems that will ensure the solution to various problems. The authors comprehensively introduce the theoretical elements which are at the basis of the field of algorithms for communications systems. Various applications of these algorithms are then illustrated with a focus on wired and wireless network access technologies. The updated applications will focus on 5G standards, and new material will include MIMO systems (Space-time block coding / Spatial multiplexing / Beamforming and interference management / Channel Estimation /mmWave Model); OFDM and SC-FDMA (Synchronization / Resource allocation (bit and power loading) / Filtered OFDM); Full Duplex Systems (Digital interference cancellation techniques).
Mit diesem Buch soll aufgezeigt werden, wie von der Natur inspirierte Berechnungen eine praktische Anwendung im maschinellen Lernen finden, damit wir ein besseres Verständnis für die Welt um uns herum entwickeln. Der Schwerpunkt liegt auf der Darstellung und Präsentation aktueller Entwicklungen in den Bereichen, in denen von der Natur inspirierte Algorithmen speziell konzipiert und angewandt werden, um komplexe reale Probleme in der Datenanalyse und Mustererkennung zu lösen, und zwar durch Anwendung fachspezifischer Lösungen. Mit einer detaillierten Beschreibung verschiedener, von der Natur inspirierter Algorithmen und ihrer multidisziplinären Anwendung (beispielsweise in Maschinenbau und Elektrotechnik, beim maschinellen Lernen, in der Bildverarbeitung, beim Data Mining und in Drahtlosnetzwerken) ist dieses Buch ein praktisches Nachschlagewerk.