Algorithms—Advances in Research and Application: 2012 Edition

Algorithms—Advances in Research and Application: 2012 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-12-26

Total Pages: 2152

ISBN-13: 1464990611

DOWNLOAD EBOOK

Algorithms—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Algorithms. The editors have built Algorithms—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Algorithms in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Algorithms—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Parallel Genetic Algorithms

Parallel Genetic Algorithms

Author: Gabriel Luque

Publisher: Springer Science & Business Media

Published: 2011-06-15

Total Pages: 173

ISBN-13: 3642220835

DOWNLOAD EBOOK

This book is the result of several years of research trying to better characterize parallel genetic algorithms (pGAs) as a powerful tool for optimization, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics. The presentation is structured in three parts. The first one is targeted to the algorithms themselves, discussing their components, the physical parallelism, and best practices in using and evaluating them. A second part deals with the theory for pGAs, with an eye on theory-to-practice issues. A final third part offers a very wide study of pGAs as practical problem solvers, addressing domains such as natural language processing, circuits design, scheduling, and genomics. This volume will be helpful both for researchers and practitioners. The first part shows pGAs to either beginners and mature researchers looking for a unified view of the two fields: GAs and parallelism. The second part partially solves (and also opens) new investigation lines in theory of pGAs. The third part can be accessed independently for readers interested in applications. The result is an excellent source of information on the state of the art and future developments in parallel GAs.


Computer Search Algorithms

Computer Search Algorithms

Author: Elisabeth C. Salander

Publisher:

Published: 2011

Total Pages: 0

ISBN-13: 9781611225273

DOWNLOAD EBOOK

Presents research data in the study of computer search algorithms, including live soft-matter quantum computing; heuristic searches applied to the resolution of a relevant optimisation problem from the telecommunications domain; the emergence and advances of quantum search algorithms; artificial neural networks; and, more.


Design and Analysis of Approximation Algorithms

Design and Analysis of Approximation Algorithms

Author: Ding-Zhu Du

Publisher: Springer Science & Business Media

Published: 2011-11-18

Total Pages: 450

ISBN-13: 1461417015

DOWNLOAD EBOOK

This book is intended to be used as a textbook for graduate students studying theoretical computer science. It can also be used as a reference book for researchers in the area of design and analysis of approximation algorithms. Design and Analysis of Approximation Algorithms is a graduate course in theoretical computer science taught widely in the universities, both in the United States and abroad. There are, however, very few textbooks available for this course. Among those available in the market, most books follow a problem-oriented format; that is, they collected many important combinatorial optimization problems and their approximation algorithms, and organized them based on the types, or applications, of problems, such as geometric-type problems, algebraic-type problems, etc. Such arrangement of materials is perhaps convenient for a researcher to look for the problems and algorithms related to his/her work, but is difficult for a student to capture the ideas underlying the various algorithms. In the new book proposed here, we follow a more structured, technique-oriented presentation. We organize approximation algorithms into different chapters, based on the design techniques for the algorithms, so that the reader can study approximation algorithms of the same nature together. It helps the reader to better understand the design and analysis techniques for approximation algorithms, and also helps the teacher to present the ideas and techniques of approximation algorithms in a more unified way.


Applications of Multi-objective Evolutionary Algorithms

Applications of Multi-objective Evolutionary Algorithms

Author: Carlos A. Coello Coello

Publisher: World Scientific

Published: 2004

Total Pages: 792

ISBN-13: 9812561064

DOWNLOAD EBOOK

- Detailed MOEA applications discussed by international experts - State-of-the-art practical insights in tackling statistical optimization with MOEAs - A unique monograph covering a wide spectrum of real-world applications - Step-by-step discussion of MOEA applications in a variety of domains


Genetic Algorithms

Genetic Algorithms

Author: Kim-Fung Man

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 346

ISBN-13: 144710577X

DOWNLOAD EBOOK

This comprehensive book gives a overview of the latest discussions in the application of genetic algorithms to solve engineering problems. Featuring real-world applications and an accompanying disk, giving the reader the opportunity to use an interactive genetic algorithms demonstration program.


Advanced Algorithms and Data Structures

Advanced Algorithms and Data Structures

Author: Marcello La Rocca

Publisher: Simon and Schuster

Published: 2021-08-10

Total Pages: 768

ISBN-13: 1638350221

DOWNLOAD EBOOK

Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. Summary As a software engineer, you’ll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don’t despair! Many of these “new” problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer. About the book Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming challenges in data analysis, machine learning, and graph computing. You’ll discover cutting-edge approaches to a variety of tricky scenarios. You’ll even learn to design your own data structures for projects that require a custom solution. What's inside Build on basic data structures you already know Profile your algorithms to speed up application Store and query strings efficiently Distribute clustering algorithms with MapReduce Solve logistics problems using graphs and optimization algorithms About the reader For intermediate programmers. About the author Marcello La Rocca is a research scientist and a full-stack engineer. His focus is on optimization algorithms, genetic algorithms, machine learning, and quantum computing. Table of Contents 1 Introducing data structures PART 1 IMPROVING OVER BASIC DATA STRUCTURES 2 Improving priority queues: d-way heaps 3 Treaps: Using randomization to balance binary search trees 4 Bloom filters: Reducing the memory for tracking content 5 Disjoint sets: Sub-linear time processing 6 Trie, radix trie: Efficient string search 7 Use case: LRU cache PART 2 MULTIDEMENSIONAL QUERIES 8 Nearest neighbors search 9 K-d trees: Multidimensional data indexing 10 Similarity Search Trees: Approximate nearest neighbors search for image retrieval 11 Applications of nearest neighbor search 12 Clustering 13 Parallel clustering: MapReduce and canopy clustering PART 3 PLANAR GRAPHS AND MINIMUM CROSSING NUMBER 14 An introduction to graphs: Finding paths of minimum distance 15 Graph embeddings and planarity: Drawing graphs with minimal edge intersections 16 Gradient descent: Optimization problems (not just) on graphs 17 Simulated annealing: Optimization beyond local minima 18 Genetic algorithms: Biologically inspired, fast-converging optimization


Introduction to Evolutionary Algorithms

Introduction to Evolutionary Algorithms

Author: Xinjie Yu

Publisher: Springer Science & Business Media

Published: 2010-06-10

Total Pages: 427

ISBN-13: 1849961298

DOWNLOAD EBOOK

Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.


Sensors: Theory, Algorithms, and Applications

Sensors: Theory, Algorithms, and Applications

Author: Vladimir L. Boginski

Publisher: Springer Science & Business Media

Published: 2011-11-24

Total Pages: 245

ISBN-13: 0387886192

DOWNLOAD EBOOK

The objective of this book is to advance the current knowledge of sensor research particularly highlighting recent advances, current work, and future needs. The goal is to share current technologies and steer future efforts in directions that will benefit the majority of researchers and practitioners working in this broad field of study.


Genetic Algorithm Essentials

Genetic Algorithm Essentials

Author: Oliver Kramer

Publisher: Springer

Published: 2017-01-07

Total Pages: 94

ISBN-13: 331952156X

DOWNLOAD EBOOK

This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.