Algorithmic Randomness and Complexity

Algorithmic Randomness and Complexity

Author: Rodney G. Downey

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 883

ISBN-13: 0387684417

DOWNLOAD EBOOK

Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.


Algorithmic Randomness

Algorithmic Randomness

Author: Johanna N. Y. Franklin

Publisher: Cambridge University Press

Published: 2020-05-07

Total Pages: 371

ISBN-13: 1108808271

DOWNLOAD EBOOK

The last two decades have seen a wave of exciting new developments in the theory of algorithmic randomness and its applications to other areas of mathematics. This volume surveys much of the recent work that has not been included in published volumes until now. It contains a range of articles on algorithmic randomness and its interactions with closely related topics such as computability theory and computational complexity, as well as wider applications in areas of mathematics including analysis, probability, and ergodic theory. In addition to being an indispensable reference for researchers in algorithmic randomness, the unified view of the theory presented here makes this an excellent entry point for graduate students and other newcomers to the field.


An Introduction to Kolmogorov Complexity and Its Applications

An Introduction to Kolmogorov Complexity and Its Applications

Author: Ming Li

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 655

ISBN-13: 1475726066

DOWNLOAD EBOOK

Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).


Computability and Randomness

Computability and Randomness

Author: André Nies

Publisher: OUP Oxford

Published: 2012-03-29

Total Pages: 450

ISBN-13: 0191627887

DOWNLOAD EBOOK

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.


Randomness and Complexity

Randomness and Complexity

Author: Cristian Calude

Publisher: World Scientific

Published: 2007

Total Pages: 466

ISBN-13: 9812770828

DOWNLOAD EBOOK

The book is a collection of papers written by a selection of eminent authors from around the world in honour of Gregory Chaitin's 60th birthday. This is a unique volume including technical contributions, philosophical papers and essays.


Information and Randomness

Information and Randomness

Author: Cristian Calude

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 252

ISBN-13: 3662030497

DOWNLOAD EBOOK

"Algorithmic information theory (AIT) is the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously", says G.J. Chaitin, one of the fathers of this theory of complexity and randomness, which is also known as Kolmogorov complexity. It is relevant for logic (new light is shed on Gödel's incompleteness results), physics (chaotic motion), biology (how likely is life to appear and evolve?), and metaphysics (how ordered is the universe?). This book, benefiting from the author's research and teaching experience in Algorithmic Information Theory (AIT), should help to make the detailed mathematical techniques of AIT accessible to a much wider audience.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Algorithmic Learning in a Random World

Algorithmic Learning in a Random World

Author: Vladimir Vovk

Publisher: Springer Science & Business Media

Published: 2005-03-22

Total Pages: 344

ISBN-13: 9780387001524

DOWNLOAD EBOOK

Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.


Exploring RANDOMNESS

Exploring RANDOMNESS

Author: Gregory J. Chaitin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 164

ISBN-13: 1447103076

DOWNLOAD EBOOK

This essential companion to Chaitin's successful books The Unknowable and The Limits of Mathematics, presents the technical core of his theory of program-size complexity. The two previous volumes are more concerned with applications to meta-mathematics. LISP is used to present the key algorithms and to enable computer users to interact with the authors proofs and discover for themselves how they work. The LISP code for this book is available at the author's Web site together with a Java applet LISP interpreter. "No one has looked deeper and farther into the abyss of randomness and its role in mathematics than Greg Chaitin. This book tells you everything hes seen. Don miss it." John Casti, Santa Fe Institute, Author of Goedel: A Life of Logic.'


Randomness Through Computation: Some Answers, More Questions

Randomness Through Computation: Some Answers, More Questions

Author: Hector Zenil

Publisher: World Scientific

Published: 2011-02-11

Total Pages: 439

ISBN-13: 9814462632

DOWNLOAD EBOOK

This review volume consists of a set of chapters written by leading scholars, most of them founders of their fields. It explores the connections of Randomness to other areas of scientific knowledge, especially its fruitful relationship to Computability and Complexity Theory, and also to areas such as Probability, Statistics, Information Theory, Biology, Physics, Quantum Mechanics, Learning Theory and Artificial Intelligence. The contributors cover these topics without neglecting important philosophical dimensions, sometimes going beyond the purely technical to formulate age old questions relating to matters such as determinism and free will.The scope of Randomness Through Computation is novel. Each contributor shares their personal views and anecdotes on the various reasons and motivations which led them to the study of Randomness. Using a question and answer format, they share their visions from their several distinctive vantage points.