It is demonstrated that Wolfe's algorithm for finding the point of smallest Euclidean norm in a given convex polytope generates the same sequence of feasible points as does the van de Panne-Whinston symmetric algorithm applied to the associated quadratic programming problem. Furthermore, it is shown how the latter algorithm may be simplified for application to problems of this type. (Author).
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.
Quadratic programming (QP) is one advanced mathematical technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This book presents recently developed algorithms for solving large QP problems and focuses on algorithms which are, in a sense optimal, i.e., they can solve important classes of problems at a cost proportional to the number of unknowns. For each algorithm presented, the book details its classical predecessor, describes its drawbacks, introduces modifications that improve its performance, and demonstrates these improvements through numerical experiments. This self-contained monograph can serve as an introductory text on quadratic programming for graduate students and researchers. Additionally, since the solution of many nonlinear problems can be reduced to the solution of a sequence of QP problems, it can also be used as a convenient introduction to nonlinear programming.
Portfolio construction is fundamental to the investment management process. In the 1950s, Harry Markowitz demonstrated the benefits of efficient diversification by formulating a mathematical program for generating the "efficient frontier" to summarize optimal trade-offs between expected return and risk. The Markowitz framework continues to be used as a basis for both practical portfolio construction and emerging research in financial economics. Such concepts as the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT), for example, provide the foundation for setting benchmarks, for predicting returns and risk, and for performance measurement. This volume showcases original essays by some of today’s most prominent academics and practitioners in the field on the contemporary application of Markowitz techniques. Covering a wide spectrum of topics, including portfolio selection, data mining tests, and multi-factor risk models, the book presents a comprehensive approach to portfolio construction tools, models, frameworks, and analyses, with both practical and theoretical implications.
Nonlinear Programming, 4 focuses on linear, quadratic, and nonlinear programming, unconstrained minimization, nonsmooth and discrete optimization, ellipsoidal methods, linear complementarity problems, and software evaluation. The selection first elaborates on an upper triangular matrix method for quadratic programming, solving quadratic programs by an exact penalty function, and QP-based methods for large-scale nonlinearly constrained optimization. Discussions focus on large-scale linearly constrained optimization, search direction for superbasic variables, finite convergence, basic properties, comparison of three active set methods, and QP-based methods for dense problems. The book then examines an iterative linear programming algorithm based on an augmented Lagrangian and iterative algorithms for singular minimization problems. The publication ponders on the derivation of symmetric positive definite secant updates, preconditioned conjugate gradient methods, and finding the global minimum of a function of one variable using the method of constant signed higher order derivatives. Topics include effects of calculation errors, application to polynomial minimization, using moderate additional storage, updating Cholesky factors, and utilizing sparse second order information. The selection is a valuable source of data for researchers interested in nonlinear programming.
We also derive recurrance relations that facilitate the efficient implementation of a class of inertia-controlling methods that maintain the factorization of a nonsingular matrix associated with the Karush-Kuhn-Tucker conditions."
Since I started working in the area of nonlinear programming and, later on, variational inequality problems, I have frequently been surprised to find that many algorithms, however scattered in numerous journals, monographs and books, and described rather differently, are closely related to each other. This book is meant to help the reader understand and relate algorithms to each other in some intuitive fashion, and represents, in this respect, a consolidation of the field. The framework of algorithms presented in this book is called Cost Approxi mation. (The preface of the Ph.D. thesis [Pat93d] explains the background to the work that lead to the thesis, and ultimately to this book.) It describes, for a given formulation of a variational inequality or nonlinear programming problem, an algorithm by means of approximating mappings and problems, a principle for the update of the iteration points, and a merit function which guides and monitors the convergence of the algorithm. One purpose of this book is to offer this framework as an intuitively appeal ing tool for describing an algorithm. One of the advantages of the framework, or any reasonable framework for that matter, is that two algorithms may be easily related and compared through its use. This framework is particular in that it covers a vast number of methods, while still being fairly detailed; the level of abstraction is in fact the same as that of the original problem statement.
The NATO Advanced Study Institute on "Algorithms for continuous optimiza tion: the state of the art" was held September 5-18, 1993, at II Ciocco, Barga, Italy. It was attended by 75 students (among them many well known specialists in optimiza tion) from the following countries: Belgium, Brasil, Canada, China, Czech Republic, France, Germany, Greece, Hungary, Italy, Poland, Portugal, Rumania, Spain, Turkey, UK, USA, Venezuela. The lectures were given by 17 well known specialists in the field, from Brasil, China, Germany, Italy, Portugal, Russia, Sweden, UK, USA. Solving continuous optimization problems is a fundamental task in computational mathematics for applications in areas of engineering, economics, chemistry, biology and so on. Most real problems are nonlinear and can be of quite large size. Devel oping efficient algorithms for continuous optimization has been an important field of research in the last 30 years, with much additional impetus provided in the last decade by the availability of very fast and parallel computers. Techniques, like the simplex method, that were already considered fully developed thirty years ago have been thoroughly revised and enormously improved. The aim of this ASI was to present the state of the art in this field. While not all important aspects could be covered in the fifty hours of lectures (for instance multiob jective optimization had to be skipped), we believe that most important topics were presented, many of them by scientists who greatly contributed to their development.
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".