Algebras of Functions on Quantum Groups: Part I

Algebras of Functions on Quantum Groups: Part I

Author: Leonid I. Korogodski

Publisher: American Mathematical Soc.

Published: 1998

Total Pages: 162

ISBN-13: 0821803360

DOWNLOAD EBOOK

The text is devoted to the study of algebras of functions on quantum groups. The book includes the theory of Poisson-Lie algebras (quasi-classical version of algebras of functions on quantum groups), a description of representations of algebras of functions and the theory of quantum Weyl groups. It can serve as a text for an introduction to the theory of quantum groups and is intended for graduate students and research mathematicians working in algebra, representation theory and mathematical physics.


Quantum Groups and Their Representations

Quantum Groups and Their Representations

Author: Anatoli Klimyk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 568

ISBN-13: 3642608965

DOWNLOAD EBOOK

This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.


Introduction to Quantum Groups

Introduction to Quantum Groups

Author: George Lusztig

Publisher: Springer Science & Business Media

Published: 2010-10-27

Total Pages: 361

ISBN-13: 0817647171

DOWNLOAD EBOOK

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.


Lectures on Algebraic Quantum Groups

Lectures on Algebraic Quantum Groups

Author: Ken Brown

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 339

ISBN-13: 303488205X

DOWNLOAD EBOOK

This book consists of an expanded set of lectures on algebraic aspects of quantum groups. It particularly concentrates on quantized coordinate rings of algebraic groups and spaces and on quantized enveloping algebras of semisimple Lie algebras. Large parts of the material are developed in full textbook style, featuring many examples and numerous exercises; other portions are discussed with sketches of proofs, while still other material is quoted without proof.


Algebras, Rings and Modules

Algebras, Rings and Modules

Author: Michiel Hazewinkel

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 425

ISBN-13: 0821852620

DOWNLOAD EBOOK

Presenting an introduction to the theory of Hopf algebras, the authors also discuss some important aspects of the theory of Lie algebras. This book includes a chapters on the Hopf algebra of symmetric functions, the Hopf algebra of representations of the symmetric groups, the Hopf algebras of the nonsymmetric and quasisymmetric functions, and the Hopf algebra of permutations.


Complex Semisimple Quantum Groups and Representation Theory

Complex Semisimple Quantum Groups and Representation Theory

Author: Christian Voigt

Publisher: Springer Nature

Published: 2020-09-24

Total Pages: 382

ISBN-13: 3030524639

DOWNLOAD EBOOK

This book provides a thorough introduction to the theory of complex semisimple quantum groups, that is, Drinfeld doubles of q-deformations of compact semisimple Lie groups. The presentation is comprehensive, beginning with background information on Hopf algebras, and ending with the classification of admissible representations of the q-deformation of a complex semisimple Lie group. The main components are: - a thorough introduction to quantized universal enveloping algebras over general base fields and generic deformation parameters, including finite dimensional representation theory, the Poincaré-Birkhoff-Witt Theorem, the locally finite part, and the Harish-Chandra homomorphism, - the analytic theory of quantized complex semisimple Lie groups in terms of quantized algebras of functions and their duals, - algebraic representation theory in terms of category O, and - analytic representation theory of quantized complex semisimple groups. Given its scope, the book will be a valuable resource for both graduate students and researchers in the area of quantum groups.


Quantum Bounded Symmetric Domains

Quantum Bounded Symmetric Domains

Author: Leonid Lʹvovych Vaksman

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 272

ISBN-13: 0821849093

DOWNLOAD EBOOK

Explores the basic theory of quantum bounded symmetric domains. The area became active in the late 1990s at a junction of noncommutative complex analysis and extensively developing theory of quantum groups. In a surprising advance of the theory of quantum bounded symmetric domains, it turned out that many classical problems admit elegant quantum analogs. Some of those are expounded in the book.


Quantum Symmetries

Quantum Symmetries

Author: Guillaume Aubrun

Publisher: Springer

Published: 2017-10-11

Total Pages: 126

ISBN-13: 331963206X

DOWNLOAD EBOOK

Providing an introduction to current research topics in functional analysis and its applications to quantum physics, this book presents three lectures surveying recent progress and open problems. A special focus is given to the role of symmetry in non-commutative probability, in the theory of quantum groups, and in quantum physics. The first lecture presents the close connection between distributional symmetries and independence properties. The second introduces many structures (graphs, C*-algebras, discrete groups) whose quantum symmetries are much richer than their classical symmetry groups, and describes the associated quantum symmetry groups. The last lecture shows how functional analytic and geometric ideas can be used to detect and to quantify entanglement in high dimensions. The book will allow graduate students and young researchers to gain a better understanding of free probability, the theory of compact quantum groups, and applications of the theory of Banach spaces to quantum information. The latter applications will also be of interest to theoretical and mathematical physicists working in quantum theory.


Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups

Author: Toshiaki Shoji

Publisher: American Mathematical Society(RI)

Published: 2004

Total Pages: 514

ISBN-13:

DOWNLOAD EBOOK

A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.


Advances in Algebra and Combinatorics

Advances in Algebra and Combinatorics

Author: K. P. Shum

Publisher: World Scientific

Published: 2008

Total Pages: 384

ISBN-13: 9812790004

DOWNLOAD EBOOK

This volume is a compilation of lectures on algebras and combinatorics presented at the Second International Congress in Algebra and Combinatorics. It reports on not only new results, but also on open problems in the field. The proceedings volume is useful for graduate students and researchers in algebras and combinatorics. Contributors include eminent figures such as V Artamanov, L Bokut, J Fountain, P Hilton, M Jambu, P Kolesnikov, Li Wei and K Ueno.