Complex Analysis and Algebraic Geometry

Complex Analysis and Algebraic Geometry

Author: Kunihiko Kodaira

Publisher: CUP Archive

Published: 1977

Total Pages: 424

ISBN-13: 9780521217774

DOWNLOAD EBOOK

The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.


Complex Geometry

Complex Geometry

Author: Daniel Huybrechts

Publisher: Springer Science & Business Media

Published: 2005

Total Pages: 336

ISBN-13: 9783540212904

DOWNLOAD EBOOK

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)


Complex Analysis

Complex Analysis

Author: Peter Ebenfelt

Publisher: Springer Science & Business Media

Published: 2011-01-30

Total Pages: 353

ISBN-13: 3034600097

DOWNLOAD EBOOK

This volume presents the proceedings of a conference on Several Complex Variables, PDE’s, Geometry, and their interactions held in 2008 at the University of Fribourg, Switzerland, in honor of Linda Rothschild.


Geometry and Complex Variables

Geometry and Complex Variables

Author: S. Coen

Publisher: CRC Press

Published: 1991-06-03

Total Pages: 522

ISBN-13: 9780824784454

DOWNLOAD EBOOK

This reference presents the proceedings of an international meeting on the occasion of theUniversity of Bologna's ninth centennial-highlighting the latest developments in the field ofgeometry and complex variables and new results in the areas of algebraic geometry, differential geometry, and analytic functions of one or several complex variables.Building upon the rich tradition of the University of Bologna's great mathematics teachers, thisvolume contains new studies on the history of mathematics, including the algebraic geometrywork of F. Enriques, B. Levi, and B. Segre ... complex function theory ideas of L. Fantappie, B. Levi, S. Pincherle, and G. Vitali ... series theory and logarithm theory contributions of P.Mengoli and S. Pincherle ... and much more. Additionally, the book lists all the University ofBologna's mathematics professors-from 1860 to 1940-with precise indications of eachcourse year by year.Including survey papers on combinatorics, complex analysis, and complex algebraic geometryinspired by Bologna's mathematicians and current advances, Geometry and ComplexVariables illustrates the classic works and ideas in the field and their influence on today'sresearc


Complex Analysis

Complex Analysis

Author: Steven G. Krantz

Publisher: Cambridge University Press

Published: 2004

Total Pages: 252

ISBN-13: 9780883850350

DOWNLOAD EBOOK

Advanced textbook on central topic of pure mathematics.


Algebraic and Analytic Geometry

Algebraic and Analytic Geometry

Author: Amnon Neeman

Publisher: Cambridge University Press

Published: 2007-09-13

Total Pages: 433

ISBN-13: 0521709830

DOWNLOAD EBOOK

Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.


Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 326

ISBN-13: 1461418097

DOWNLOAD EBOOK

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.


Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Several Complex Variables with Connections to Algebraic Geometry and Lie Groups

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 530

ISBN-13: 082183178X

DOWNLOAD EBOOK

This text presents an integrated development of core material from several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraicsheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest arethe last three chapters, which are devoted to applications of the preceding material to the study of the structure theory and representation theory of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem,which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for theexpert.


Complex Functions

Complex Functions

Author: Gareth A. Jones

Publisher: Cambridge University Press

Published: 1987-03-19

Total Pages: 362

ISBN-13: 9780521313667

DOWNLOAD EBOOK

An elementary account of many aspects of classical complex function theory, including Mobius transformations, elliptic functions, Riemann surfaces, Fuchsian groups and modular functions. The book is based on lectures given to advanced undergraduate students and is well suited as a textbook for a second course in complex function theory.