A Primer of Algebraic D-Modules

A Primer of Algebraic D-Modules

Author: S. C. Coutinho

Publisher: Cambridge University Press

Published: 1995-09-07

Total Pages: 223

ISBN-13: 0521551196

DOWNLOAD EBOOK

The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.


D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory

Author: Ryoshi Hotta

Publisher: Springer Science & Business Media

Published: 2007-11-07

Total Pages: 408

ISBN-13: 081764363X

DOWNLOAD EBOOK

D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.


Algebraic D-modules

Algebraic D-modules

Author: Armand Borel

Publisher:

Published: 1987

Total Pages: 382

ISBN-13:

DOWNLOAD EBOOK

Presented here are recent developments in the algebraic theory of D-modules. The book contains an exposition of the basic notions and operations of D-modules, of special features of coherent, holonomic, and regular holonomic D-modules, and of the Riemann-Hilbert correspondence. The theory of Algebraic D-modules has found remarkable applications outside of analysis proper, in particular to infinite dimensional representations of semisimple Lie groups, to representations of Weyl groups, and to algebraic geometry.


D-modules and Microlocal Calculus

D-modules and Microlocal Calculus

Author: Masaki Kashiwara

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 276

ISBN-13: 9780821827666

DOWNLOAD EBOOK

Masaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public.


Regular and Irregular Holonomic D-Modules

Regular and Irregular Holonomic D-Modules

Author: Masaki Kashiwara

Publisher: Cambridge University Press

Published: 2016-05-26

Total Pages: 119

ISBN-13: 1316613453

DOWNLOAD EBOOK

A unified treatment of the Riemann-Hilbert correspondence for (not necessarily regular) holonomic D-modules using indsheaves.


Algebraic Approach to Differential Equations

Algebraic Approach to Differential Equations

Author: D?ng Tr ng Lˆ

Publisher: World Scientific

Published: 2010

Total Pages: 320

ISBN-13: 9814273244

DOWNLOAD EBOOK

Mixing elementary results and advanced methods, Algebraic Approach to Differential Equations aims to accustom differential equation specialists to algebraic methods in this area of interest. It presents material from a school organized by The Abdus Salam International Centre for Theoretical Physics (ICTP), the Bibliotheca Alexandrina, and the International Centre for Pure and Applied Mathematics (CIMPA).


Commutative Algebra

Commutative Algebra

Author: David Eisenbud

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 784

ISBN-13: 1461253500

DOWNLOAD EBOOK

This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.


Integral Closure of Ideals, Rings, and Modules

Integral Closure of Ideals, Rings, and Modules

Author: Craig Huneke

Publisher: Cambridge University Press

Published: 2006-10-12

Total Pages: 446

ISBN-13: 0521688604

DOWNLOAD EBOOK

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.


Gröbner Deformations of Hypergeometric Differential Equations

Gröbner Deformations of Hypergeometric Differential Equations

Author: Mutsumi Saito

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 261

ISBN-13: 366204112X

DOWNLOAD EBOOK

The theory of Gröbner bases is a main tool for dealing with rings of differential operators. This book reexamines the concept of Gröbner bases from the point of view of geometric deformations. The algorithmic methods introduced in this book are particularly useful for studying the systems of multidimensional hypergeometric PDE's introduced by Gelfand, Kapranov, and Zelevinsky. A number of original research results are contained in the book, and many open problems are raised for future research in this rapidly growing area of computational mathematics.


Hodge Ideals

Hodge Ideals

Author: Mircea Mustaţă

Publisher: American Mathematical Soc.

Published: 2020-02-13

Total Pages: 92

ISBN-13: 1470437813

DOWNLOAD EBOOK

The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.