Covering, arguably, one of the most attractive and mysterious mathematical objects, the Monster group, this text strives to provide an insightful introduction and the discusses the current state of the field. The Monster group is related to many areas of mathematics, as well as physics, from number theory to string theory. This book cuts through the complex nature of the field, highlighting some of the mysteries and intricate relationships involved. Containing many meaningful examples and a manual introduction to the computer package GAP, it provides the opportunity and resources for readers to start their own calculations. Some 20 experts here share their expertise spanning this exciting field, and the resulting volume is ideal for researchers and graduate students working in Combinatorial Algebra, Group theory and related areas.
Alexander Masters tripped over his first book subject on a Cambridge sidewalk, and the result was the multi-award-winning bestseller Stuart: A Life Backwards. His second, he’s found under his floorboards. One of the greatest mathematical prodigies of the twentieth century, Simon Norton stomps around Alexander’s basement in semidarkness, dodging between stalagmites of bus timetables and engorged plastic bags, eating tinned kippers stirred into packets of Bombay mix. Simon is exploring a theoretical puzzle so complex and critical to our understanding of the universe that it is known as the Monster. It looks like a sudoku table—except a sudoku table has nine columns of numbers. The Monster has 808017424794512875886459904961710757005754368000000000 columns. But that’s not the whole story. What’s inside the decaying sports bag he never lets out of his clutches? Why does he hurtle out of the house in the middle of the night? And—good God!—what is that noxious smell that creeps up the stairwell? Grumpy, poignant, comical—more intimate than either the author or his quarry intended—Simon: The Genius in My Basement is the story of a friendship and a pursuit. Part biography, part memoir, and part popular science, it is a study of the frailty of brilliance, the measures of happiness, and Britain’s most uncooperative egghead eccentric.
The articles in this book are based on talks given at the international conference 'Lie algebras, vertex operator algebras and their applications'. The focus of the papers is mainly on Lie algebras, quantum groups, vertex operator algebras and their applications to number theory, combinatorics and conformal field theory.
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger
In an exciting, fast-paced historical narrative ranging across two centuries, Ronan takes readers on an exhilarating tour of this final mathematical quest to understand symmetry.
This book is a blend of recent developments in theoretical and computational aspects of group theory. It presents the state-of-the-art research topics in different aspects of group theory, namely, character theory, representation theory, integral group rings, the Monster simple group, computational algorithms and methods on finite groups, finite loops, periodic groups, Camina groups and generalizations, automorphisms and non-abelian tensor product of groups. Presenting a collection of invited articles by some of the leading and highly active researchers in the theory of finite groups and their representations and the Monster group, with a focus on computational aspects, this book is of particular interest to researchers in the area of group theory and related fields of mathematics.