Algebra VII

Algebra VII

Author: D.J. Collins

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 248

ISBN-13: 3642580130

DOWNLOAD EBOOK

From the reviews: "... The book under review consists of two monographs on geometric aspects of group theory ... Together, these two articles form a wide-ranging survey of combinatorial group theory, with emphasis very much on the geometric roots of the subject. This will be a useful reference work for the expert, as well as providing an overview of the subject for the outsider or novice. Many different topics are described and explored, with the main results presented but not proved. This allows the interested reader to get the flavour of these topics without becoming bogged down in detail. Both articles give comprehensive bibliographies, so that it is possible to use this book as the starting point for a more detailed study of a particular topic of interest. ..." Bulletin of the London Mathematical Society, 1996


Algebra, Grades 7 - 9

Algebra, Grades 7 - 9

Author: Carson-Dellosa

Publisher: Carson-Dellosa Publishing

Published: 2014-02-03

Total Pages: 132

ISBN-13: 1483800776

DOWNLOAD EBOOK

The 100+ Series, Algebra, offers in-depth practice and review for challenging middle school math topics such as radicals and exponents; factoring; and solving and graphing equations. Bonus activities on each page help extend the learning and activities, making these books perfect for daily review in the classroom or at home. Common Core State Standards have raised expectations for math learning, and many students in grades 6Ð8 are studying more accelerated math at younger ages. The 100+ Series provides the solution with titles that include over 100 targeted practice activities for learning algebra, geometry, and other advanced math topics. It also features over 100 reproducible, subject specific, practice pages to support standards-based instruction.


Algebra Readiness Made Easy

Algebra Readiness Made Easy

Author: Carole E. Greenes

Publisher: Teaching Resources

Published: 2008

Total Pages: 0

ISBN-13: 9780439839273

DOWNLOAD EBOOK

Students identify variables, solve for the values of unknowns, identify and continue patterns, use logical reasoning, and more.


Algebra II

Algebra II

Author: N. Bourbaki

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 457

ISBN-13: 3642616984

DOWNLOAD EBOOK

This is a softcover reprint of chapters four through seven of the 1990 English translation of the revised and expanded version of Bourbaki’s Algebre. Much material was added or revised for this edition, which thoroughly establishes the theories of commutative fields and modules over a principal ideal domain.


Several Complex Variables VII

Several Complex Variables VII

Author: H. Grauert

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 374

ISBN-13: 3662098733

DOWNLOAD EBOOK

The first survey of its kind, written by internationally known, outstanding experts who developed substantial parts of the field. The book contains an introduction written by Remmert, describing the history of the subject, and is very useful to graduate students and researchers in complex analysis, algebraic geometry and differential geometry.


Noncommutative Algebraic Geometry and Representations of Quantized Algebras

Noncommutative Algebraic Geometry and Representations of Quantized Algebras

Author: A. Rosenberg

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 333

ISBN-13: 9401584303

DOWNLOAD EBOOK

This book is based on lectures delivered at Harvard in the Spring of 1991 and at the University of Utah during the academic year 1992-93. Formally, the book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose of what follows is to explain the spirit of the book and how different parts are linked together without entering into details. The point of departure is the notion of the left spectrum of an associative ring, and the first natural steps of general theory of noncommutative affine, quasi-affine, and projective schemes. This material is presented in Chapter I. Further developments originated from the requirements of several important examples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern mathematical physics. The dasses of rings we consider indude as special cases: quantum plane, algebra of q-differential operators, (quantum) Heisenberg and Weyl algebras, (quantum) enveloping algebra ofthe Lie algebra sl(2) , coordinate algebra of the quantum group SL(2), the twisted SL(2) of Woronowicz, so called dispin algebra and many others.