Encyclopedia of Geomagnetism and Paleomagnetism

Encyclopedia of Geomagnetism and Paleomagnetism

Author: David Gubbins

Publisher: Springer Science & Business Media

Published: 2007-07-19

Total Pages: 1061

ISBN-13: 1402044232

DOWNLOAD EBOOK

This reference encompasses the fields of Geomagnetism and Paleomagnetism in a single volume. Both sciences have applications in navigation, in the search for minerals and hydrocarbons, in dating rock sequences, and in unraveling past geologic movements such as plate motions they have contributed to a better understanding of the Earth. The book describes in fine detail the current state of knowledge and provides an up-to-date synthesis of the most basic concepts. It is an indispensable working tool not only for geophysicists and geophysics students but also for geologists, physicists, atmospheric and environmental scientists, and engineers.


Space Physics

Space Physics

Author: May-Britt Kallenrode

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 487

ISBN-13: 3662099594

DOWNLOAD EBOOK

Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.


Literature 1985, Part 1

Literature 1985, Part 1

Author: S. Böhme

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 1157

ISBN-13: 3662123525

DOWNLOAD EBOOK

Astronomy and Astrophysics Abstracts aims to present a comprehensive documen tation of the literature concerning all aspects of astronomy, astrophysics, and their border fields. It is devoted to the recording, summarizing, and indexing of the relevant publications throughout the world. Astronomy and Astrophysics Abstracts is prepared by a special department of the Astronomisches Rechen-Institut under the auspices of the International Astronomical Union. Volume 39 records literature published in 1985 and received before August 15, 1985. Some older documents which we received late and which are not surveyed in earlier volumes are included too. We acknowledge with thanks contributions of our colleagues all over the world. We also express our gratitude to all organiza tions, observatories, and publishers which provide us with complimentary copies of their publications. On account of the introduction of an object index the scope of index information will be considerably enlarged beginning with this volume. In connection with the subject index an additional source to satisfy the needs of retrieval is opened up. Starting with Volume 33, all the recording, correction, and data processing work was done by means of computers. The recording was done by our technical staff members Ms. Helga Ballmann, Ms. Mona El-Choura, Ms. Monika Kohl, Ms. Sylvia Matyssek. Ms. Karin Burkhardt, Ms. Susanne Schlotelburg, and Mr. Stefan Wagner supported our task by careful proofreading. It is a pleasure to thank them all for their encouragement. Heidelberg, September 1985 The Editors Contents Introduction . . . . . . . . . . . .


Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws

Magnetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws

Author: Gary Webb

Publisher: Springer

Published: 2018-02-05

Total Pages: 306

ISBN-13: 3319725114

DOWNLOAD EBOOK

This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels’ theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman’s direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfvén simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.