AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python

AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2023-08-08

Total Pages: 363

ISBN-13:

DOWNLOAD EBOOK

In the project "Airline Passenger Satisfaction Analysis and Prediction Using Machine Learning and Deep Learning with Python," the aim was to analyze and predict passenger satisfaction in the airline industry. The project began with an extensive data exploration phase, wherein the dataset containing various features related to passenger experiences was thoroughly examined. The dataset was then preprocessed, ensuring data cleanliness and preparing it for further analysis. One of the initial steps involved understanding the distribution of categorized features within the dataset. By visualizing the distribution of these features, insights were gained into the prevalence of different categories, providing a preliminary understanding of passenger preferences and experiences. For the prediction aspect, machine learning models were employed, and a Grid Search approach was implemented to fine-tune hyperparameters and optimize model performance. This process allowed the identification of the best-performing model configuration, enhancing the accuracy of passenger satisfaction predictions. The models used are Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting. Going beyond traditional machine learning, a Deep Learning approach was introduced using an Artificial Neural Network (ANN). This model, designed to capture intricate patterns and relationships within the data, showcased the potential of deep learning for improving predictive accuracy. The evaluation of both machine learning and deep learning models was centered around key metrics. The accuracy score was a primary indicator of model performance, reflecting the ratio of correctly predicted passenger satisfaction outcomes. Additionally, the Classification Report provided a comprehensive overview of precision, recall, and F1-score for each category, shedding light on the model's ability to classify passenger satisfaction levels accurately. Visualizing the results played a pivotal role in the project. The plotted Training and Validation Accuracy and Loss graphs offered insights into the convergence and generalization capabilities of the models. These visualizations helped in understanding potential overfitting or underfitting issues and guided the fine-tuning process. To assess the models' predictive performance, a Confusion Matrix was constructed. This matrix presented a clear breakdown of correct and incorrect predictions, facilitating an understanding of where the model excelled and where it struggled. Furthermore, scatter plots were utilized to visually compare the predicted values against the actual true values, offering a tangible representation of the models' effectiveness. Throughout the project, rigorous data preprocessing and feature engineering were integral to improving model accuracy. Features were appropriately scaled, and categorical variables were transformed using techniques like one-hot encoding, enabling models to efficiently learn from the data. The project also focused on the interpretability of the models, enabling stakeholders to comprehend the factors influencing passenger satisfaction predictions. This interpretability was essential for making informed business decisions based on the model insights. In conclusion, the project showcased a comprehensive approach to analyzing and predicting airline passenger satisfaction. Through meticulous data exploration, feature distribution analysis, machine learning model selection, hyperparameter tuning, and deep learning implementation, the project provided valuable insights for the airline industry. By utilizing a combination of machine learning and deep learning techniques, the project demonstrated a holistic approach to understanding and enhancing passenger experiences and satisfaction levels.


ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON

ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON

Author: Vivian Siahaan

Publisher: BALIGE PUBLISHING

Published: 2022-02-17

Total Pages: 860

ISBN-13:

DOWNLOAD EBOOK

PROJECT 1: DEFAULT LOAN PREDICTION BASED ON CUSTOMER BEHAVIOR Using Machine Learning and Deep Learning with Python In finance, default is failure to meet the legal obligations (or conditions) of a loan, for example when a home buyer fails to make a mortgage payment, or when a corporation or government fails to pay a bond which has reached maturity. A national or sovereign default is the failure or refusal of a government to repay its national debt. The dataset used in this project belongs to a Hackathon organized by "Univ.AI". All values were provided at the time of the loan application. Following are the features in the dataset: Income, Age, Experience, Married/Single, House_Ownership, Car_Ownership, Profession, CITY, STATE, CURRENT_JOB_YRS, CURRENT_HOUSE_YRS, and Risk_Flag. The Risk_Flag indicates whether there has been a default in the past or not. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python The dataset used in this project contains an airline passenger satisfaction survey. In this case, you will determine what factors are highly correlated to a satisfied (or dissatisfied) passenger and predict passenger satisfaction. Below are the features in the dataset: Gender: Gender of the passengers (Female, Male); Customer Type: The customer type (Loyal customer, disloyal customer); Age: The actual age of the passengers; Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel); Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus); Flight distance: The flight distance of this journey; Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5); Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient; Ease of Online booking: Satisfaction level of online booking; Gate location: Satisfaction level of Gate location; Food and drink: Satisfaction level of Food and drink; Online boarding: Satisfaction level of online boarding; Seat comfort: Satisfaction level of Seat comfort; Inflight entertainment: Satisfaction level of inflight entertainment; On-board service: Satisfaction level of On-board service; Leg room service: Satisfaction level of Leg room service; Baggage handling: Satisfaction level of baggage handling; Check-in service: Satisfaction level of Check-in service; Inflight service: Satisfaction level of inflight service; Cleanliness: Satisfaction level of Cleanliness; Departure Delay in Minutes: Minutes delayed when departure; Arrival Delay in Minutes: Minutes delayed when Arrival; and Satisfaction: Airline satisfaction level (Satisfaction, neutral or dissatisfaction) The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CREDIT CARD CHURNING CUSTOMER ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON The dataset used in this project consists of more than 10,000 customers mentioning their age, salary, marital_status, credit card limit, credit card category, etc. There are 20 features in the dataset. In the dataset, there are only 16.07% of customers who have churned. Thus, it's a bit difficult to train our model to predict churning customers. Following are the features in the dataset: 'Attrition_Flag', 'Customer_Age', 'Gender', 'Dependent_count', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', and 'Avg_Utilization_Ratio',. The target variable is 'Attrition_Flag'. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: MARKETING ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON This data set was provided to students for their final project in order to test their statistical analysis skills as part of a MSc. in Business Analytics. It can be utilized for EDA, Statistical Analysis, and Visualizations. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; Complain = 1 if customer complained in the last 2 years, 0 otherwise; and Country = Customer's location. The machine and deep learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.


The Airline Passenger Load Factor Prediction with Machine Learning - Linear Regression Method and Modeling with Fractional Calculus and Deep Assessment Methodology

The Airline Passenger Load Factor Prediction with Machine Learning - Linear Regression Method and Modeling with Fractional Calculus and Deep Assessment Methodology

Author: Kevser Simsek

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Forecasting is used in air transportation to make short-term judgments and longer-term decisions to figure out how demand patterns will vary over time. In our paper, the passenger load factor (PLF) is forecasted using a variety of models so that a preliminary structure for both the economy and business classes can be obtained. To solve this problem, when each flight is assumed to have its own characteristics, a method that can reflect both the flight profile and the flight time dimension is needed. As a result, we used the least-squares method to create a continuous curve that is valid for any time interval by using the least-squares method with the 2015 daily reservation data of the 19-market areas of Turkish Airlines. Making predictions with machine learning was aimed at solving this large-scale problem in a computationally efficient way. Forecasting PLF is done by using information from two years of reservations, group sales data, calendar information, weekly dates, trend differences between the current year and the previous year, load factor information from the same period of the previous year and panel data to allow individual heterogeneity control. The findings of the fractional model when coefficient N is equal to 15 are approximately 2.4 times better than the DAM model and superior to regression analysis. With this study, it is expected to maximize revenue, modify capacity, increase flight route efficiency, optimize air traffic operation, and make projections for specific flying days in terms of revenue management.


The Predictive Airliner

The Predictive Airliner

Author: Andrew W. Pearson

Publisher:

Published: 2018-08-20

Total Pages: 442

ISBN-13: 9781979079570

DOWNLOAD EBOOK

The Predictive Airliner is an airline that utilizes the latest technology to deliver an exceptional personalized experience to each and every passenger it flies. Today, technology such as AI, Machine Learning, Augmented Reality, IoT, Real-time stream processing, social media, streaming analytics and wearables are altering the Customer Experience (CX) landscape and airlines need to jump aboard this fast moving technology or run the risk of being left out in the cold. The Predictive Airliner reveals how these and other technologies can help shape the customer journey. The book details how the five types of analytics-descriptive, diagnostic, predictive, prescriptive, and edge analytics-affect not only the customer journey, but also just about every operational function within an airline. An IoT-connected airline can make its operations smart. Data collected at multiple company and customer touch points can be utilized to increase customer satisfaction, as well as make the airline more profitable. The book lays out a blueprint for airlines to use to build a better overall operation. By utilizing AI, machine learning, and deep learning airlines can monitor the health of their airplanes, ensure employee satisfaction, and deliver an award-winning customer experience every time. Analytical processes like decision trees, k-means clustering, logistic regression and neural networks are explained in detail, with specific use cases detailing how they are used profitably in the aviation industry. Edge analytics, sentiment analysis, clickstream analysis, and location analysis are seen through a customer intelligence lens to ensure passengers are treated in a personalized way that will not only increase loyalty but turn passengers into apostles for the airlines they chose to fly on. Connected devices can help with inventory optimization, supply chain management, labor management, waste management, as well as keep the airline's data centers green and its energy use smart. Social media is no longer a vanity platform, but rather it is a place to both connect with current customers, as well as court new ones. It is also a powerful branding channel that can be utilized to both understand an airline's position in the market, as well as a place to benchmark its position against competitors. The Predictive Airliner reveals how airlines can utilize this channel in a multitude of ways to connect with customers, as well as help in moments of crisis. Today, technology moves at break-neck speed and it can offer the potential of anticipatory capabilities, but it also comes with a confusing variety of technological terms--Big Data, Cognitive Computing, CX, Data Lakes, Hadoop, Kafka, Personalization, Spark, etc., etc. The Predictive Airliner will help airline executives make sense of it all, so that he or she can cut through the confusing clutter of technological jargon and understand why a Spark-based real-time stream processing data stream might be preferable to a TIBCO Streambase one, or none at all. The final chapter explains how an airline can utilize the concept of the customer journey as a roadmap to increase customer satisfaction. This book will help airline executives break through the technological clutter so that they can deliver an unrivaled customer experience to each and every passenger who steps aboard their planes.


2018 IEEE International Congress on Big Data (BigData Congress)

2018 IEEE International Congress on Big Data (BigData Congress)

Author: IEEE Staff

Publisher:

Published: 2018-07-02

Total Pages:

ISBN-13: 9781538672334

DOWNLOAD EBOOK

ig Data Architecture, Big Data Modeling, Big Data As A Service, Big Data for Vertical Industries (Government, Healthcare, etc ), Big Data Analytics, Big Data Toolkits, Big Data Open Platforms, Economic Analysis, Big Data for Enterprise Transformation, Big Data in Business Performance Management, Big Data for Business Model Innovations and Analytics, Big Data in Enterprise Management Models and Practices, Big Data in Government Management Models and Practices, and Big Data in Smart Planet Solutions


Microsoft Azure Essentials Azure Machine Learning

Microsoft Azure Essentials Azure Machine Learning

Author: Jeff Barnes

Publisher: Microsoft Press

Published: 2015-04-25

Total Pages: 393

ISBN-13: 073569818X

DOWNLOAD EBOOK

Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.


Dive Into Deep Learning

Dive Into Deep Learning

Author: Joanne Quinn

Publisher: Corwin Press

Published: 2019-07-15

Total Pages: 297

ISBN-13: 1544385404

DOWNLOAD EBOOK

The leading experts in system change and learning, with their school-based partners around the world, have created this essential companion to their runaway best-seller, Deep Learning: Engage the World Change the World. This hands-on guide provides a roadmap for building capacity in teachers, schools, districts, and systems to design deep learning, measure progress, and assess conditions needed to activate and sustain innovation. Dive Into Deep Learning: Tools for Engagement is rich with resources educators need to construct and drive meaningful deep learning experiences in order to develop the kind of mindset and know-how that is crucial to becoming a problem-solving change agent in our global society. Designed in full color, this easy-to-use guide is loaded with tools, tips, protocols, and real-world examples. It includes: • A framework for deep learning that provides a pathway to develop the six global competencies needed to flourish in a complex world — character, citizenship, collaboration, communication, creativity, and critical thinking. • Learning progressions to help educators analyze student work and measure progress. • Learning design rubrics, templates and examples for incorporating the four elements of learning design: learning partnerships, pedagogical practices, learning environments, and leveraging digital. • Conditions rubrics, teacher self-assessment tools, and planning guides to help educators build, mobilize, and sustain deep learning in schools and districts. Learn about, improve, and expand your world of learning. Put the joy back into learning for students and adults alike. Dive into deep learning to create learning experiences that give purpose, unleash student potential, and transform not only learning, but life itself.


Handbook of Big Data Technologies

Handbook of Big Data Technologies

Author: Albert Y. Zomaya

Publisher: Springer

Published: 2017-02-25

Total Pages: 890

ISBN-13: 331949340X

DOWNLOAD EBOOK

This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.


Personalized Machine Learning

Personalized Machine Learning

Author: Julian McAuley

Publisher: Cambridge University Press

Published: 2022-02-03

Total Pages: 338

ISBN-13: 1009008579

DOWNLOAD EBOOK

Every day we interact with machine learning systems offering individualized predictions for our entertainment, social connections, purchases, or health. These involve several modalities of data, from sequences of clicks to text, images, and social interactions. This book introduces common principles and methods that underpin the design of personalized predictive models for a variety of settings and modalities. The book begins by revising 'traditional' machine learning models, focusing on adapting them to settings involving user data, then presents techniques based on advanced principles such as matrix factorization, deep learning, and generative modeling, and concludes with a detailed study of the consequences and risks of deploying personalized predictive systems. A series of case studies in domains ranging from e-commerce to health plus hands-on projects and code examples will give readers understanding and experience with large-scale real-world datasets and the ability to design models and systems for a wide range of applications.


Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Fundamentals of Machine Learning for Predictive Data Analytics, second edition

Author: John D. Kelleher

Publisher: MIT Press

Published: 2020-10-20

Total Pages: 853

ISBN-13: 0262361108

DOWNLOAD EBOOK

The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.