Aircraft Thermal Management

Aircraft Thermal Management

Author: Mark Ahlers

Publisher: SAE International

Published: 2016-05-02

Total Pages: 107

ISBN-13: 076808296X

DOWNLOAD EBOOK

Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft. Additional information on Aircraft Thermal Management System Architectures is available from SAE AIR 5744 issued by the AC-9 Aircraft Environmental System Committee and the SAE book Aircraft Thermal Management Integrated Analysis (PT-178). SAE AIR 5744 defines the discipline of aircraft thermal management system engineering while Aircraft Thermal Management Integrated Analysis discusses approaches to computer simulation of the simultaneous operation of all systems affecting thermal management on an aircraft.


Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-08-09

Total Pages: 123

ISBN-13: 0309440998

DOWNLOAD EBOOK

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.


An Introduction to Aircraft Thermal Management

An Introduction to Aircraft Thermal Management

Author: Mark Ahlers

Publisher: SAE International

Published: 2019-04-14

Total Pages: 206

ISBN-13: 0768093422

DOWNLOAD EBOOK

Aircraft Thermal Management (ATM)focuses on how to manage heat in an aircraft to meet the temperature requirements for passengers and vehicle. This primarily involves removing heat and protecting equipment, systems, and structure from heat sources that could raise their temperature beyond design limits. Crew and passengers must be neither too hot nor too cold during airplane operations. Thus, maintaining thermal comport is critically important, and not a trivial operation. Written by Mark F. Ahlers, a retired Boeing Technical Fellow and its first Thermal Marshal, An Introduction to Aircraft Thermal Management is the ultimate source of knowledge concerning: Temperature and thermal related requirements Airplane-generated heat sources External heat sources Aircraft heat sinks Fire and Failures Environmental control systems Thermal design Analytical modeling Analytical software Testing Military aircraft thermal management Fully illustrated and amply referenced, An Introduction to Aircraft Thermal Management provides a very balanced approach between theory and practice, best practices and technical insights. It is a must-have reference for both young engineers starting in the filed and for seasoned professionals willing to re-sharpen their skills.


Proceedings of the 5th China Aeronautical Science and Technology Conference

Proceedings of the 5th China Aeronautical Science and Technology Conference

Author: Chinese Aeronautical Society

Publisher: Springer Nature

Published: 2021-11-02

Total Pages: 1073

ISBN-13: 981167423X

DOWNLOAD EBOOK

To sort out the progress of aviation science and technology and industry, look forward to the future development trend, commend scientific and technological innovation achievements and talents, strengthen international cooperation, promote discipline exchanges, encourage scientific and technological innovation, and promote the development of aviation, the Chinese Aeronautical Society holds a China Aviation Science and Technology Conference every two years, which has been successfully held for four times and has become the highest level, largest scale, most influential and authoritative science and technology conference in the field of aviation in China. The 5th China Aviation Science and Technology Conference will be held in Wuzhen, Jiaxing City, Zhejiang Province in 2021, with the theme of "New Generation of Aviation Equipment and Technology", with academician Zhang Yanzhong as the chairman of the conference. This book contains original, peer-reviewed research papers from the conference. The topics covered include but are not limited to navigation, guidance and control technologies, key technologies for aircraft design and overall optimization, aviation test technologies, aviation airborne systems, electromechanical technologies, structural design, aerodynamics and flight mechanics, other related technologies, advanced aviation materials and manufacturing technologies, advanced aviation propulsion technologies, and civil aviation transportation. The papers presented here share the latest discoveries on aviation science and technology, making the book a valuable asset for researchers, engineers, and students.


Aircraft Systems

Aircraft Systems

Author: Ian Moir

Publisher: John Wiley & Sons

Published: 2011-08-26

Total Pages: 481

ISBN-13: 1119965209

DOWNLOAD EBOOK

This third edition of Aircraft Systems represents a timely update of the Aerospace Series’ successful and widely acclaimed flagship title. Moir and Seabridge present an in-depth study of the general systems of an aircraft – electronics, hydraulics, pneumatics, emergency systems and flight control to name but a few - that transform an aircraft shell into a living, functioning and communicating flying machine. Advances in systems technology continue to alloy systems and avionics, with aircraft support and flight systems increasingly controlled and monitored by electronics; the authors handle the complexities of these overlaps and interactions in a straightforward and accessible manner that also enhances synergy with the book’s two sister volumes, Civil Avionics Systems and Military Avionics Systems. Aircraft Systems, 3rd Edition is thoroughly revised and expanded from the last edition in 2001, reflecting the significant technological and procedural changes that have occurred in the interim – new aircraft types, increased electronic implementation, developing markets, increased environmental pressures and the emergence of UAVs. Every chapter is updated, and the latest technologies depicted. It offers an essential reference tool for aerospace industry researchers and practitioners such as aircraft designers, fuel specialists, engine specialists, and ground crew maintenance providers, as well as a textbook for senior undergraduate and postgraduate students in systems engineering, aerospace and engineering avionics.


Commercial Aircraft Propulsion and Energy Systems Research

Commercial Aircraft Propulsion and Energy Systems Research

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-09-09

Total Pages: 123

ISBN-13: 0309440963

DOWNLOAD EBOOK

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.