Provides an up-to-date integration of expert systems with fuzzy logic and neural networks. Includes coverage of simulation models not present in other books. Presents cases and examples taken from the authors' experience in research and applying the technology to real-world situations.
This book is designed to identify some of the current applications and techniques of artificial intelligence as an aid to solving problems and accomplishing tasks. It provides a general introduction to the various branches of AI which include formal logic, reasoning, knowledge engineering, expert systems, neural networks, and fuzzy logic, etc. The book has been structured into five parts with an emphasis on expert systems: problems and state space search, knowledge engineering, neural networks, fuzzy logic, and Prolog. Features: Introduces the various branches of AI which include formal logic, reasoning, knowledge engineering, expert systems, neural networks, and fuzzy logic, etc. Includes a separate chapter on Prolog to introduce basic programming techniques in AI
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
This Focuses on the development of an expert system utilizing artificial intelligent neural networks. Expert systems are computer-based programs designed to mimic human expertise in a specific domain. By integrating advanced neural network algorithms, this research aims to enhance the capabilities of expert systems and improve their accuracy and efficiency. Artificial intelligent neural networks are powerful tools that can learn from data, recognize patterns, and make intelligent decisions. By leveraging the capabilities of neural networks, the developed expert system can analyze complex information, extract relevant features, and provide expert-level recommendations or solutions. The integration of artificial intelligence techniques in expert systems enables them to adapt and learn from new data, making them more robust and capable of handling dynamic environments. This interdisciplinary approach combines expertise from computer science, machine learning, and domain-specific knowledge to develop a cutting-edge system. The outcome of this research has significant implications across various domains, including healthcare, finance, engineering, and more. The developed expert system can assist professionals in decision-making, problem-solving, and optimizing complex processes. Ultimately, this study contributes to the advancement of artificial intelligence technologies and their practical applications in expert systems.
This book gives readers and practitioners the tools they need to develop appropriate applications and systems. It also explores managing and institutionalizing expert system development and usage.
This book provides a comprehensive presentation of artificial intelligence (AI) methodologies and tools valuable for solving a wide spectrum of engineering problems. What's more, it offers these AI tools on an accompanying disk with easy-to-use software. Artificial Intelligence and Expert Systems for Engineers details the AI-based methodologies known as: Knowledge-Based Expert Systems (KBES); Design Synthesis; Design Critiquing; and Case-Based Reasoning. KBES are the most popular AI-based tools and have been successfully applied to planning, diagnosis, classification, monitoring, and design problems. Case studies are provided with problems in engineering design for better understanding of the problem-solving models using the four methodologies in an integrated software environment. Throughout the book, examples are given so that students and engineers can acquire skills in the use of AI-based methodologies for application to practical problems ranging from diagnosis to planning, design, and construction and manufacturing in various disciplines of engineering. Artificial Intelligence and Expert Systems for Engineers is a must-have reference for students, teachers, research scholars, and professionals working in the area of civil engineering design in particular and engineering design in general.
This book presents the Proceedings of the Tenth International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, focusing on the theoretical aspects of intelligent systems research as well as extensions of theory of intelligent thinking machines.
"This book is devoted mainly to applied expert systems. It does cover four additional applied AI Topics: natural language processing, computer vision, speech understanding and intelligent robotics"--Preface
The past 50 years have witnessed a revolution in computing and related communications technologies. The contributions of industry and university researchers to this revolution are manifest; less widely recognized is the major role the federal government played in launching the computing revolution and sustaining its momentum. Funding a Revolution examines the history of computing since World War II to elucidate the federal government's role in funding computing research, supporting the education of computer scientists and engineers, and equipping university research labs. It reviews the economic rationale for government support of research, characterizes federal support for computing research, and summarizes key historical advances in which government-sponsored research played an important role. Funding a Revolution contains a series of case studies in relational databases, the Internet, theoretical computer science, artificial intelligence, and virtual reality that demonstrate the complex interactions among government, universities, and industry that have driven the field. It offers a series of lessons that identify factors contributing to the success of the nation's computing enterprise and the government's role within it.