AI Mastery: Advanced Artificial Intelligence Concepts, Book 3

AI Mastery: Advanced Artificial Intelligence Concepts, Book 3

Author: Dizzy Davidson

Publisher: Pure Water Books

Published: 2024-09-11

Total Pages: 45

ISBN-13:

DOWNLOAD EBOOK

Are you struggling to fully understand AI and automation? You’re not alone. Many grapple with the complexities of advanced AI concepts and their practical applications. But what if you could master these topics with ease? “AI Mastery: Advanced Artificial Intelligence Concepts, Book 3” is your definitive guide to conquering advanced AI. This book demystifies complex algorithms, reinforcement learning, AI in robotics, and big data analytics, providing you with the knowledge and tools to excel. Benefits of reading this book: Deep Dive into Advanced Algorithms: Understand and implement sophisticated machine learning algorithms. Master Reinforcement Learning: Learn key concepts and see real-world applications. Integrate AI with Robotics: Explore how AI enhances robotic systems through detailed case studies. Harness Big Data: Discover the role of AI in big data analytics and the tools to leverage it. This book is an essential resource for anyone looking to advance their AI knowledge. Whether you’re a student, professional, or enthusiast, “AI Mastery” offers hands-on projects and bonus content to solidify your expertise. Why this book? Comprehensive Coverage: From advanced algorithms to big data, this book covers all critical areas. Practical Insights: Real-world examples and case studies make complex concepts accessible. Expert Guidance: Learn from detailed explanations and expert insights. Get this book now to unlock the full potential of AI and automation. Transform your understanding and become an AI expert today! Viral Bullet Points Detailed study of advanced machine learning algorithms Comprehensive guide to reinforcement learning Integration of AI and robotics with real-world case studies Role of AI in big data analytics Hands-on advanced projects for practical experience Call to Action: Don’t miss out on mastering advanced AI concepts. Get your copy of “AI Mastery: Advanced Artificial Intelligence Concepts, Book 3” today and take your AI knowledge to the next level!


Deep Dive into AI: Intermediate Level Artificial Intelligence Concepts, Book 2

Deep Dive into AI: Intermediate Level Artificial Intelligence Concepts, Book 2

Author: DIZZY OKANKWU

Publisher: Pure Water Books

Published: 2024-09-10

Total Pages: 76

ISBN-13:

DOWNLOAD EBOOK

Struggling to fully understand AI and automation? Finding it challenging to grasp intermediate AI concepts? You’re not alone, and the good news is, this book is here to help. “Deep Dive into AI: Intermediate Level Artificial Intelligence Concepts Book 2” is your essential guide to navigating the complexities of AI at an intermediate level. By reading this book, you’ll gain: In-depth explanations of intermediate AI concepts and techniques. Practical insights into how AI and automation are transforming industries. Step-by-step guidance on advancing your AI knowledge. This book is perfect for anyone who wants to deepen their understanding of AI and learn how it can be applied in real-world scenarios. It breaks down complex topics into simple, easy-to-understand language, making it accessible for those with a basic understanding of AI. Why This Book is Essential: Comprehensive Coverage: Delves into intermediate AI concepts you need to know. Real-World Applications: Learn how AI is used in various industries. Expert Guidance: Insights from AI professionals and thought leaders. Practical Tips: Actionable advice to help you advance your AI skills. Key Takeaways: Understand the fundamentals of intermediate AI and automation. Learn how AI is shaping the future of technology. Discover practical applications of AI in everyday life. Gain the knowledge to start your own AI projects. Don’t miss out on the AI revolution. Get your copy of “Deep Dive into AI: Intermediate Level Artificial Intelligence Concepts Book 2” today and take the next step towards mastering AI. Equip yourself with the knowledge and skills to thrive in the age of AI and automation.


Grokking Deep Learning

Grokking Deep Learning

Author: Andrew W. Trask

Publisher: Simon and Schuster

Published: 2019-01-23

Total Pages: 475

ISBN-13: 163835720X

DOWNLOAD EBOOK

Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide


The Essence of Artificial Intelligence

The Essence of Artificial Intelligence

Author: Alison Cawsey

Publisher: Pearson

Published: 1998

Total Pages: 204

ISBN-13: 9780135717790

DOWNLOAD EBOOK

A concise, practical introduction to artificial intelligence, this title starts with the fundamentals of knowledge representation, inference, expert systems, natural language processing, machine learning, neural networks, agents, robots, and much more. Examples and algorithms are presented throughout, and the book includes a complete glossary.


Probabilistic Machine Learning

Probabilistic Machine Learning

Author: Kevin P. Murphy

Publisher: MIT Press

Published: 2022-03-01

Total Pages: 858

ISBN-13: 0262369303

DOWNLOAD EBOOK

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.


Mastering ChatGPT and Google Colab for Machine Learning

Mastering ChatGPT and Google Colab for Machine Learning

Author: Rosario Moscato

Publisher: Orange Education Pvt Ltd

Published: 2024-09-20

Total Pages: 441

ISBN-13: 819795349X

DOWNLOAD EBOOK

Learn how to harness the power of ChatGPT to streamline data analysis, accelerate model development, and unlock innovative solutions to real-world problems. KEY FEATURES ● Step-by-step progression from foundational machine learning concepts to advanced techniques using ChatGPT and Google Colab. ● Clear and detailed instructions for data preparation, model training, and evaluation, simplifying complex machine learning tasks. ● Extensive use of Google Colab for coding and experimentation, providing a real-world platform to apply learned techniques effectively. DESCRIPTION Unlock the future of machine learning by mastering Google Colab, trusted by over 5 million data scientists, and ChatGPT, powering 100 million users worldwide. This book bridges the latest in AI with practical, hands-on applications for data science. With these game-changing tools at your command, you’ll be able to streamline complex workflows, automate tedious tasks, and propel your AI skills to new heights—making machine learning faster, smarter, and more accessible than ever before. Each chapter unfolds a specific aspect of data science and machine learning, seamlessly integrated with ChatGPT’s free version capabilities. The foundational chapters introduce key machine learning concepts, while advanced sections explore topics such as natural language processing, sentiment analysis, and predictive analytics—all illustrated with real-world examples and interactive exercises. The later chapters focus on optimizing tasks using the more powerful paid version of ChatGPT, culminating in the creation of a custom GPT named “Data Scientist” to tackle specialized challenges. Additionally, the book includes a section on best practices, expert tips, and interview questions, making it a comprehensive resource for aspiring data scientists and seasoned professionals alike. WHAT WILL YOU LEARN ● Learn to integrate and optimize ChatGPT and Google Colab for enhanced data science tasks. ● Master techniques for preparing and cleaning data for analysis. ● Gain a solid grasp of statistical concepts essential for data science. ● Learn the processes for training, evaluating, and refining machine learning models. ● Perform data analysis and preprocessing using natural language processing techniques. ● Customize and deploy GPT models for specific data science applications. WHO IS THIS BOOK FOR? This book is ideal for aspiring data scientists and machine learning enthusiasts eager to enhance their skills with ChatGPT and Google Colab. It also serves tech professionals, academics, and business analysts seeking practical insights into AI and data science. A basic understanding of programming, statistics, and data analysis is recommended before diving in. TABLE OF CONTENTS 1. Introduction to ChatGPT 2. ChatGPT for Data Science and Machine Learning 3. Fundamentals of Statistics for Data Science 4. Missing Values and Outliers 5. Relation Between Variables and Charts 6. Data Preparation 7. Training and Evaluation 8. Fine Tuning, Features Selection, and Final Model 9. Data Preparation and Training 10. Fine Tuning and Final Model 11. Data Analysis and Dataset Manipulation (NLP) 12. Sentiment Analysis and Predictions 13. ChatGPT-4 for a Completely Automated Data Science Workload 14. Customizing GPT for Applications 15. Takeaways and Conclusions Index


Machine Learning: Concepts, Methodologies, Tools and Applications

Machine Learning: Concepts, Methodologies, Tools and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2011-07-31

Total Pages: 2174

ISBN-13: 1609608194

DOWNLOAD EBOOK

"This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe


Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition

Author: Mehryar Mohri

Publisher: MIT Press

Published: 2018-12-25

Total Pages: 505

ISBN-13: 0262351366

DOWNLOAD EBOOK

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.


Artificial Intelligence By Example

Artificial Intelligence By Example

Author: Denis Rothman

Publisher: Packt Publishing Ltd

Published: 2020-02-28

Total Pages: 579

ISBN-13: 1839212810

DOWNLOAD EBOOK

Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples Key FeaturesAI-based examples to guide you in designing and implementing machine intelligenceBuild machine intelligence from scratch using artificial intelligence examplesDevelop machine intelligence from scratch using real artificial intelligenceBook Description AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples. This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing. By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions. What you will learnApply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google TranslateUnderstand chained algorithms combining unsupervised learning with decision treesSolve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graphLearn about meta learning models with hybrid neural networksCreate a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data loggingBuilding conversational user interfaces (CUI) for chatbotsWriting genetic algorithms that optimize deep learning neural networksBuild quantum computing circuitsWho this book is for Developers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.


AI Mastery Trilogy

AI Mastery Trilogy

Author: Andrew Hinton

Publisher: Book Bound Studios

Published:

Total Pages: 309

ISBN-13: 1761590073

DOWNLOAD EBOOK

Dive into the "AI Mastery Trilogy," the ultimate collection for professionals seeking to conquer the world of artificial intelligence (AI). This 3-in-1 compendium is meticulously crafted to guide you from the foundational principles of AI to the intricate mathematical frameworks and practical coding applications that will catapult your expertise to new heights. Book 1: "AI Basics for Managers" by Andrew Hinton is your gateway to understanding and implementing AI in business. It equips managers with the knowledge to navigate the AI landscape, identify opportunities, and lead their organizations toward a future of innovation and growth. Book 2: "Essential Math for AI" demystifies the mathematical backbone of AI, offering a deep dive into the core concepts that fuel AI systems. From linear algebra to game theory, this book is a treasure trove for anyone eager to grasp the numerical and logical foundations that underpin AI's transformative power. Book 3: "AI and ML for Coders" is the hands-on manual for coders ready to harness AI and machine learning in their projects. It provides a comprehensive overview of AI and ML technologies, practical coding advice, and ethical considerations, ensuring you're well-equipped to create cutting-edge, responsible AI applications. The "AI Mastery Trilogy" is more than just a set of books; it's a comprehensive learning journey designed to empower business leaders, mathematicians, and coders alike. Whether you're looking to lead, understand, or build the future of AI, this collection is an indispensable resource for mastering the art and science of one of the most exciting fields in technology. Embrace the AI revolution and secure your copy of the "AI Mastery Trilogy" today!