AI and Machine Learning for Network and Security Management

AI and Machine Learning for Network and Security Management

Author: Yulei Wu

Publisher: John Wiley & Sons

Published: 2022-10-28

Total Pages: 308

ISBN-13: 1119835895

DOWNLOAD EBOOK

AI AND MACHINE LEARNING FOR NETWORK AND SECURITY MANAGEMENT Extensive Resource for Understanding Key Tasks of Network and Security Management AI and Machine Learning for Network and Security Management covers a range of key topics of network automation for network and security management, including resource allocation and scheduling, network planning and routing, encrypted traffic classification, anomaly detection, and security operations. In addition, the authors introduce their large-scale intelligent network management and operation system and elaborate on how the aforementioned areas can be integrated into this system, plus how the network service can benefit. Sample ideas covered in this thought-provoking work include: How cognitive means, e.g., knowledge transfer, can help with network and security management How different advanced AI and machine learning techniques can be useful and helpful to facilitate network automation How the introduced techniques can be applied to many other related network and security management tasks Network engineers, content service providers, and cybersecurity service providers can use AI and Machine Learning for Network and Security Management to make better and more informed decisions in their areas of specialization. Students in a variety of related study programs will also derive value from the work by gaining a base understanding of historical foundational knowledge and seeing the key recent developments that have been made in the field.


AI and Machine Learning for Network and Security Management

AI and Machine Learning for Network and Security Management

Author: Yulei Wu

Publisher: John Wiley & Sons

Published: 2022-11-08

Total Pages: 308

ISBN-13: 1119835879

DOWNLOAD EBOOK

AI AND MACHINE LEARNING FOR NETWORK AND SECURITY MANAGEMENT Extensive Resource for Understanding Key Tasks of Network and Security Management AI and Machine Learning for Network and Security Management covers a range of key topics of network automation for network and security management, including resource allocation and scheduling, network planning and routing, encrypted traffic classification, anomaly detection, and security operations. In addition, the authors introduce their large-scale intelligent network management and operation system and elaborate on how the aforementioned areas can be integrated into this system, plus how the network service can benefit. Sample ideas covered in this thought-provoking work include: How cognitive means, e.g., knowledge transfer, can help with network and security management How different advanced AI and machine learning techniques can be useful and helpful to facilitate network automation How the introduced techniques can be applied to many other related network and security management tasks Network engineers, content service providers, and cybersecurity service providers can use AI and Machine Learning for Network and Security Management to make better and more informed decisions in their areas of specialization. Students in a variety of related study programs will also derive value from the work by gaining a base understanding of historical foundational knowledge and seeing the key recent developments that have been made in the field.


Machine Learning and Security

Machine Learning and Security

Author: Clarence Chio

Publisher: "O'Reilly Media, Inc."

Published: 2018-01-26

Total Pages: 394

ISBN-13: 1491979852

DOWNLOAD EBOOK

Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters Quickly detect anomalies, including breaches, fraud, and impending system failure Conduct malware analysis by extracting useful information from computer binaries Uncover attackers within the network by finding patterns inside datasets Examine how attackers exploit consumer-facing websites and app functionality Translate your machine learning algorithms from the lab to production Understand the threat attackers pose to machine learning solutions


Research Anthology on Artificial Intelligence Applications in Security

Research Anthology on Artificial Intelligence Applications in Security

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2020-11-27

Total Pages: 2253

ISBN-13: 1799877485

DOWNLOAD EBOOK

As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.


Implications of Artificial Intelligence for Cybersecurity

Implications of Artificial Intelligence for Cybersecurity

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-01-27

Total Pages: 99

ISBN-13: 0309494508

DOWNLOAD EBOOK

In recent years, interest and progress in the area of artificial intelligence (AI) and machine learning (ML) have boomed, with new applications vigorously pursued across many sectors. At the same time, the computing and communications technologies on which we have come to rely present serious security concerns: cyberattacks have escalated in number, frequency, and impact, drawing increased attention to the vulnerabilities of cyber systems and the need to increase their security. In the face of this changing landscape, there is significant concern and interest among policymakers, security practitioners, technologists, researchers, and the public about the potential implications of AI and ML for cybersecurity. The National Academies of Sciences, Engineering, and Medicine convened a workshop on March 12-13, 2019 to discuss and explore these concerns. This publication summarizes the presentations and discussions from the workshop.


Machine Learning, Blockchain, and Cyber Security in Smart Environments

Machine Learning, Blockchain, and Cyber Security in Smart Environments

Author: Sarvesh Tanwar

Publisher: CRC Press

Published: 2022-08-31

Total Pages: 313

ISBN-13: 1000623912

DOWNLOAD EBOOK

Machine Learning, Cyber Security, and Blockchain in Smart Environment: Application and Challenges provides far-reaching insights into the recent techniques forming the backbone of smart environments, and addresses the vulnerabilities that give rise to the challenges in real-word implementation. The book focuses on the benefits related to the emerging applications such as machine learning, blockchain and cyber security. Key Features: Introduces the latest trends in the fields of machine learning, blockchain and cyber security Discusses the fundamentals, challenges and architectural overviews with concepts Explores recent advancements in machine learning, blockchain, and cyber security Examines recent trends in emerging technologies This book is primarily aimed at graduates, researchers, and professionals working in the areas of machine learning, blockchain, and cyber security.


Hands-On Artificial Intelligence for Cybersecurity

Hands-On Artificial Intelligence for Cybersecurity

Author: Alessandro Parisi

Publisher: Packt Publishing Ltd

Published: 2019-08-02

Total Pages: 331

ISBN-13: 1789805171

DOWNLOAD EBOOK

Build smart cybersecurity systems with the power of machine learning and deep learning to protect your corporate assets Key FeaturesIdentify and predict security threats using artificial intelligenceDevelop intelligent systems that can detect unusual and suspicious patterns and attacksLearn how to test the effectiveness of your AI cybersecurity algorithms and toolsBook Description Today's organizations spend billions of dollars globally on cybersecurity. Artificial intelligence has emerged as a great solution for building smarter and safer security systems that allow you to predict and detect suspicious network activity, such as phishing or unauthorized intrusions. This cybersecurity book presents and demonstrates popular and successful AI approaches and models that you can adapt to detect potential attacks and protect your corporate systems. You'll learn about the role of machine learning and neural networks, as well as deep learning in cybersecurity, and you'll also learn how you can infuse AI capabilities into building smart defensive mechanisms. As you advance, you'll be able to apply these strategies across a variety of applications, including spam filters, network intrusion detection, botnet detection, and secure authentication. By the end of this book, you'll be ready to develop intelligent systems that can detect unusual and suspicious patterns and attacks, thereby developing strong network security defenses using AI. What you will learnDetect email threats such as spamming and phishing using AICategorize APT, zero-days, and polymorphic malware samplesOvercome antivirus limits in threat detectionPredict network intrusions and detect anomalies with machine learningVerify the strength of biometric authentication procedures with deep learningEvaluate cybersecurity strategies and learn how you can improve themWho this book is for If you’re a cybersecurity professional or ethical hacker who wants to build intelligent systems using the power of machine learning and AI, you’ll find this book useful. Familiarity with cybersecurity concepts and knowledge of Python programming is essential to get the most out of this book.


Artificial Intelligence for Autonomous Networks

Artificial Intelligence for Autonomous Networks

Author: Mazin Gilbert

Publisher: CRC Press

Published: 2018-09-25

Total Pages: 498

ISBN-13: 1351130145

DOWNLOAD EBOOK

Artificial Intelligence for Autonomous Networks introduces the autonomous network by juxtaposing two unique technologies and communities: Networking and AI. The book reviews the technologies behind AI and software-defined network/network function virtualization, highlighting the exciting opportunities to integrate those two worlds. Outlining the new frontiers for autonomous networks, this book highlights their impact and benefits to consumers and enterprise customers. It also explores the potential of the autonomous network for transforming network operation, cyber security, enterprise services, 5G and IoT, infrastructure monitoring and traffic optimization, and finally, customer experience and care. With contributions from leading experts, this book will provide an invaluable resource for network engineers, software engineers, artificial intelligence, and machine learning researchers.


Handbook of Research on Machine and Deep Learning Applications for Cyber Security

Handbook of Research on Machine and Deep Learning Applications for Cyber Security

Author: Ganapathi, Padmavathi

Publisher: IGI Global

Published: 2019-07-26

Total Pages: 506

ISBN-13: 1522596135

DOWNLOAD EBOOK

As the advancement of technology continues, cyber security continues to play a significant role in today’s world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.


Data Science For Cyber-security

Data Science For Cyber-security

Author: Nicholas A Heard

Publisher: World Scientific

Published: 2018-09-26

Total Pages: 305

ISBN-13: 178634565X

DOWNLOAD EBOOK

Cyber-security is a matter of rapidly growing importance in industry and government. This book provides insight into a range of data science techniques for addressing these pressing concerns.The application of statistical and broader data science techniques provides an exciting growth area in the design of cyber defences. Networks of connected devices, such as enterprise computer networks or the wider so-called Internet of Things, are all vulnerable to misuse and attack, and data science methods offer the promise to detect such behaviours from the vast collections of cyber traffic data sources that can be obtained. In many cases, this is achieved through anomaly detection of unusual behaviour against understood statistical models of normality.This volume presents contributed papers from an international conference of the same name held at Imperial College. Experts from the field have provided their latest discoveries and review state of the art technologies.