Flight Dynamics and Control of Aero and Space Vehicles

Flight Dynamics and Control of Aero and Space Vehicles

Author: Rama K. Yedavalli

Publisher: John Wiley & Sons

Published: 2019-11-01

Total Pages: 560

ISBN-13: 1118934423

DOWNLOAD EBOOK

Flight Vehicle Dynamics and Control Rama K. Yedavalli, The Ohio State University, USA A comprehensive textbook which presents flight vehicle dynamics and control in a unified framework Flight Vehicle Dynamics and Control presents the dynamics and control of various flight vehicles, including aircraft, spacecraft, helicopter, missiles, etc, in a unified framework. It covers the fundamental topics in the dynamics and control of these flight vehicles, highlighting shared points as well as differences in dynamics and control issues, making use of the ‘systems level’ viewpoint. The book begins with the derivation of the equations of motion for a general rigid body and then delineates the differences between the dynamics of various flight vehicles in a fundamental way. It then focuses on the dynamic equations with application to these various flight vehicles, concentrating more on aircraft and spacecraft cases. Then the control systems analysis and design is carried out both from transfer function, classical control, as well as modern, state space control points of view. Illustrative examples of application to atmospheric and space vehicles are presented, emphasizing the ‘systems level’ viewpoint of control design. Key features: Provides a comprehensive treatment of dynamics and control of various flight vehicles in a single volume. Contains worked out examples (including MATLAB examples) and end of chapter homework problems. Suitable as a single textbook for a sequence of undergraduate courses on flight vehicle dynamics and control. Accompanied by a website that includes additional problems and a solutions manual. The book is essential reading for undergraduate students in mechanical and aerospace engineering, engineers working on flight vehicle control, and researchers from other engineering backgrounds working on related topics.


Autonomous Safety Control of Flight Vehicles

Autonomous Safety Control of Flight Vehicles

Author: Xiang Yu

Publisher: CRC Press

Published: 2021-02-12

Total Pages: 200

ISBN-13: 1000346129

DOWNLOAD EBOOK

Aerospace vehicles are by their very nature a crucial environment for safety-critical systems. By virtue of an effective safety control system, the aerospace vehicle can maintain high performance despite the risk of component malfunction and multiple disturbances, thereby enhancing aircraft safety and the probability of success for a mission. Autonomous Safety Control of Flight Vehicles presents a systematic methodology for improving the safety of aerospace vehicles in the face of the following occurrences: a loss of control effectiveness of actuators and control surface impairments; the disturbance of observer-based control against multiple disturbances; actuator faults and model uncertainties in hypersonic gliding vehicles; and faults arising from actuator faults and sensor faults. Several fundamental issues related to safety are explicitly analyzed according to aerospace engineering system characteristics; while focusing on these safety issues, the safety control design problems of aircraft are studied and elaborated on in detail using systematic design methods. The research results illustrate the superiority of the safety control approaches put forward. The expected reader group for this book includes undergraduate and graduate students but also industry practitioners and researchers. About the Authors: Xiang Yu is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include safety control of aerospace engineering systems, guidance, navigation, and control of unmanned aerial vehicles. Lei Guo, appointed as "Chang Jiang Scholar Chair Professor", is a Professor with the School of Automation Science and Electrical Engineering, Beihang University, Beijing, China. His research interests include anti-disturbance control and filtering, stochastic control, and fault detection with their applications to aerospace systems. Youmin Zhang is a Professor in the Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Québec, Canada. His research interests include fault diagnosis and fault-tolerant control, and cooperative guidance, navigation, and control (GNC) of unmanned aerial/space/ground/surface vehicles. Jin Jiang is a Professor in the Department of Electrical & Computer Engineering, Western University, London, Ontario, Canada. His research interests include fault-tolerant control of safety-critical systems, advanced control of power plants containing non-traditional energy resources, and instrumentation and control for nuclear power plants.


Automatic Control of Atmospheric and Space Flight Vehicles

Automatic Control of Atmospheric and Space Flight Vehicles

Author: Ashish Tewari

Publisher: Springer Science & Business Media

Published: 2011-08-04

Total Pages: 384

ISBN-13: 081764864X

DOWNLOAD EBOOK

Automatic Control of Atmospheric and Space Flight Vehicles is perhaps the first book on the market to present a unified and straightforward study of the design and analysis of automatic control systems for both atmospheric and space flight vehicles. Covering basic control theory and design concepts, it is meant as a textbook for senior undergraduate and graduate students in modern courses on flight control systems. In addition to the basics of flight control, this book covers a number of upper-level topics and will therefore be of interest not only to advanced students, but also to researchers and practitioners in aeronautical engineering, applied mathematics, and systems/control theory.


Flight Control Systems

Flight Control Systems

Author: Roger Pratt

Publisher: IET

Published: 2000

Total Pages: 416

ISBN-13: 9780852967669

DOWNLOAD EBOOK

Annotation Bridging the gap between academic research and real-world applications, this reference on modern flight control methods for fixed-wing aircraft deals with fundamentals of flight control systems design, then concentrates on applications based on the modern control methods used in the latest aircraft. The book is written for practicing engineers who are new to the aviation industry, postgraduate students in strategic or applied research, and advanced undergraduates. Some knowledge of classical control is assumed. Pratt is a member of IEEE and is UK Member for AIAA's Technical Committee on Guidance, Navigation and Control. Annotation c. Book News, Inc., Portland, OR (booknews.com)


Modeling and Simulation of Aerospace Vehicle Dynamics

Modeling and Simulation of Aerospace Vehicle Dynamics

Author: Peter H. Zipfel

Publisher: AIAA

Published: 2000

Total Pages: 586

ISBN-13: 9781563474569

DOWNLOAD EBOOK

A textbook for an advanced undergraduate course in which Zipfel (aerospace engineering, U. of Florida) introduces the fundamentals of an approach to, or step in, design that has become a field in and of itself. The first part assumes an introductory course in dynamics, and the second some specialized knowledge in subsystem technologies. Practicing engineers in the aerospace industry, he suggests, should be able to cover the material without a tutor. Rather than include a disk, he has made supplementary material available on the Internet. Annotation copyrighted by Book News, Inc., Portland, OR


Flight Systems and Control

Flight Systems and Control

Author: Tian Seng Ng

Publisher: Springer

Published: 2018-04-13

Total Pages: 241

ISBN-13: 9811087210

DOWNLOAD EBOOK

This book focuses on flight vehicles and their navigational systems, discussing different forms of flight structures and their control systems, from fixed wings to rotary crafts. Software simulation enables testing of the hardware without actual implementation, and the flight simulators, mechanics, glider development and navigation systems presented here are suitable for lab-based experimentation studies. It explores laboratory testing of flight navigational sensors, such as the magnetic, acceleration and Global Positioning System (GPS) units, and illustrates the six-axis inertial measurement unit (IMU) instrumentation as well as its data acquisition methodology. The book offers an introduction to the various unmanned aerial vehicle (UAV) systems and their accessories, including the linear quadratic regulator (LQR) method for controlling the rotorcraft. It also describes a Matrix Laboratory (MATLAB) control algorithm that simulates and runs the lab-based 3 degrees of freedom (DOF) helicopter, as well as LabVIEW software used to validate controller design and data acquisition. Lastly, the book explores future developments in aviation techniques.


Aircraft Control and Simulation

Aircraft Control and Simulation

Author: Brian L. Stevens

Publisher: John Wiley & Sons

Published: 2015-10-02

Total Pages: 768

ISBN-13: 1118870972

DOWNLOAD EBOOK

Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.


Practical Design of Flight Control Systems for Launch Vehicles and Missiles

Practical Design of Flight Control Systems for Launch Vehicles and Missiles

Author: N.V. Kadam

Publisher: Allied Publishers

Published: 2009-06-15

Total Pages: 380

ISBN-13: 9387997812

DOWNLOAD EBOOK

This book gives in a concise and easy to understand form the various aspects of Practical Design of Flight Control Systems for Launch Vehicles and Missiles. It covers almost every aspect of Flight Control System Design which a designer would like to know, such as mission considerations, control requirements for various segments of the flight trajectory and different types of control effectors. It further gives generalized equations of motion with a novel method of incorporating structural flexibility and propellant sloshing which does not require rederivation, and very easy and common sense approach to deriving slosh and gimballed engine dynamic equations. Subsequently it gives the control system configurations, power plant sizing, loop design for linearised system and detailed analysis and design of on-off reaction control systems. It also covers various software features which are necessary for actual implementation of the design in flight missions, robustness features to avoid malfunctioning in some circumstances, design validation aspects including end-to-end sign checks and describes some flight experiences which called for design updates. The book is unique for its strong practical flavour and is directly useful to the working engineers in the field and post graduate students in Aerospace Engineering.