This guideline defines ventilation and then natural ventilation. It explores the design requirements for natural ventilation in the context of infection control, describing the basic principles of design, construction, operation and maintenance for an effective natural ventilation system to control infection in health-care settings.
"The combination of scientific and institutional integrity represented by this book is unusual. It should be a model for future endeavors to help quantify environmental risk as a basis for good decisionmaking." â€"William D. Ruckelshaus, from the foreword. This volume, prepared under the auspices of the Health Effects Institute, an independent research organization created and funded jointly by the Environmental Protection Agency and the automobile industry, brings together experts on atmospheric exposure and on the biological effects of toxic substances to examine what is knownâ€"and not knownâ€"about the human health risks of automotive emissions.
This book assesses the most appropriate forms of aerosol therapy for critically ill patients. Aerosol therapy is applied for the treatment of several pulmonary diseases in addition to some promising applications intended for systemic absorption. Nowadays, aerosol delivery to clinically stable patients in the outpatient settings is done easily with a lot of focus on patient counseling and enhancement of lung deposition. A lot of guidelines are available for several diseases and it could offer adequate guidance to the therapists concerning escalation or de-escalation of therapy to enhance treatment efficiency and safety. However, in critically ill patients aerosol delivery is mostly done by the choice of the respiratory therapist only according to his knowledge. The book describes the type of patients requiring aerosol therapy, different aerosol generators available for the treatment of critically ill patients, mechanisms of aerosol lung deposition, and factors affecting aerosol deposition. It also discusses the special needs of neonates and infants, transitioning aerosol from hospital to home, and the methods of aerosol delivery to different patient e.g. nasal delivery patients, ventilated patients, etc. Moreover, it reviews methods of detecting such aerosol delivery to the lung. At the end, it discusses the suggested monitoring plans and weaning protocols to ensure high efficacy and safety of the ventilatory support in such patients. Given its scope, the book can serve as guidelines or specific recommendations to maximize clinical benefits of medicated aerosols in critically ill patients and it represents a valuable resource for intensivists, pulmonologists and healthcare professionals working at ICUs.
This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.
The #1 guide to aerosol science and technology -now better than ever Since 1982, Aerosol Technology has been the text of choice among students and professionals who need to acquire a thorough working knowledge of modern aerosol theory and applications. Now revised to reflect the considerable advances that have been made over the past seventeen years across a broad spectrum of aerosol-related application areas - from occupational hygiene and biomedical technology to microelectronics and pollution control -this new edition includes: * A chapter on bioaerosols * New sections on resuspension, transport losses, respiratory deposition models, and fractal characterization of particles * Expanded coverage of atmospheric aerosols, including background aerosols and urban aerosols * A section on the impact of aerosols on global warming and ozone depletion. Aerosol Technology, Second Edition also features dozens of new, fully worked examples drawn from a wide range of industrial and research settings, plus new chapter-end practice problems to help readers master the material quickly.
The National Institute of Allergy and Infectious Diseases (NIAID) gives the highest priority to developing countermeasures against bioterrorism agents that are highly infective when dispersed in aerosol form. Developing drugs to prevent or treat illnesses caused by bioterrorism agents requires testing their effectiveness in animals since human clinical trials would be unethical. At the request of NIAID, the National Academies conducted a study to examine how such testing could be improved. Overcoming Challenges to Develop Countermeasures Against Aerosolized Bioterrorism Agents provides recommendations to researchers on selecting the kinds of animal models, aerosol generators, and bioterrorism agent doses that would produce conditions that most closely mimic the disease process in humans. It also urges researchers to fully document experimental parameters in the literature so that studies can be reproduced and compared. The book recommends that all unclassified data on bioterrorism agent studies-including unclassified, unpublished data from U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID)-be published in the open literature. The book also calls on the U.S. Food and Drug Administration to improve the process by which bioterrorism countermeasures are approved based on the results of animal studies.
This thoroughly revised and expanded reference provides authoritative discussions on the physiologic, pharmacologic, metabolic, molecular, cellular and physicochemical factors, influencing the efficacy and utilization of pharmaceutical aerosol. It analyzes the latest science and developments in the generation, administration and characterization of these compounds, showcasing current clinical applications, the efficiency and limitations of major aerosol products and emerging aerosol therapies impacting the field.
As more attention is dedicated to understanding the occupational health risks associated with the industrial manufacture and use of nanotechnology, Aerosols Handbook: Measurement, Dosimetry, and Health Effects is a timely presentation of time-tested research in the field of aerosol science. The book covers a multitude of topics in indoor, outdoor,
Studies of underground miners have provided a wealth of data about the risk of lung cancer from exposure to radon's progeny elements, but the application of the miner data to the home environment is not straightforward. In Comparative Dosimetry of Radon in Mines and Homes, an expert committee uses a new dosimetric model to extrapolate to the home environment the risk relationships found in the miner studies. Important new scaling factors are developed for applying risk estimates based on miner data to men, women, and children in domestic environments. The book includes discussions of radon dosimetry and the uncertainties concerning other risk factors such as age and smoking habits. The book also contains a thorough technical discussion of the characteristics of radioactive aerosols in domestic environments, the dose of inhaled radon progeny to different age groups, identification of respiratory tract cells at the greatest risk of carcinogenesis, and a complete description of the new lung dose model being developed by the International Commission on Radiological Protection as modified by this committee.