Particles in Turbulent Flows

Particles in Turbulent Flows

Author: Leonid I. Zaichik

Publisher: John Wiley & Sons

Published: 2008-12-04

Total Pages: 318

ISBN-13: 3527626263

DOWNLOAD EBOOK

The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.


Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration

Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration

Author: Jean-Pierre Minier

Publisher: Springer

Published: 2016-07-26

Total Pages: 268

ISBN-13: 3319415670

DOWNLOAD EBOOK

The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.


Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration

Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration

Author: Jean-Pierre Minier

Publisher: Springer

Published: 2018-06-12

Total Pages: 261

ISBN-13: 9783319823850

DOWNLOAD EBOOK

The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.