Advancing Ultra-high Field MRI Functional and Structural Applications

Advancing Ultra-high Field MRI Functional and Structural Applications

Author:

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Magnetic resonance imaging (MRI) has shown to be a valuable tool for studying the human brain, allowing in-vivo visualization of structures and anatomy in great detail, especially at Ultra-High field strengths (≥ 7T). MRI is not limited by anatomical and structural information. It can study the brain’s anatomy, functionality, connectivity (functional and structural), and chemical metabolism. Functional MRI (fMRI), for instance, enables the investigation of brain function mechanisms in-vivo with a non-invasive advantage compared to other tools. The present thesis focuses on advanced MRI techniques for ultra-high field strength (≥ 7T), specifically for neuroscience applications. Combined with the higher field strength, these techniques provide better imaging quality and precise brain activity measurement. For example, high-quality anatomical T1 weighted images are essential for several MRI applications, notably, to serve as an anatomical reference in fMRI and gray matter segmentation. Unfortunately, increased field strength also induces non-uniformities in the transmit field (B1+) that can compromise image contrast non-uniformly. One of the goals of the present thesis was to investigate new strategies to overcome this issue. Regarding the functional brain investigation, the gradient-echo (GRE) is the typical method of choice for fMRI applications. Despite its high sensitivity to deoxyhemoglobin variations and widespread availability, the gradient-echo (GRE) BOLD signal is predominantly driven by the large draining vessels resulting in a limited spatial specificity, especially for 7T or higher field strength applications in which the BOLD sensitivity (susceptibility effect) is higher compared to lower static field scanners. In this context, we investigated an alternative fMRI method called vascular space occupancy (VASO) that promises higher spatial specificity than the typical GRE BOLD. To achieve the aim of this thesis, we used four approaches (chapters 2-5).


Ultra-High Field Neuro MRI

Ultra-High Field Neuro MRI

Author: Karin Markenroth Bloch

Publisher: Elsevier

Published: 2023-08-21

Total Pages: 628

ISBN-13: 0323999530

DOWNLOAD EBOOK

Ultra-High Field Neuro MRI is a comprehensive reference and educational resource on the current state of neuroimaging at ultra-high field (UHF), with an emphasis on 7T. Sections cover the MR physics aspects of UHF, including the technical challenges and practical solutions that have enabled the rapid growth of 7T MRI. Individual chapters are dedicated to the different techniques that most strongly benefit from UHF, as well as chapters with a focus on different application areas in anatomical, functional and metabolic imaging. Finally, several chapters highlight the neurological and psychiatric applications for which 7T has shown benefits. The book is aimed at scientists who develop MR technologies and support clinical and neuroscience research, as well as users who want to benefit from UHF neuro MR techniques in their work. It also provides a comprehensive introduction to the field. Presents the opportunities and technical challenges presented by MRI at ultra-high field Describes advanced ultra-high field neuro MR techniques for clinical and neuroscience applications Enables the reader to critically assess the specific UHF advantages over currently available techniques at clinical field strengths


Ultra-high Field Magnetic Resonance Imaging: Mri Instrumentation And Clinical Implementation

Ultra-high Field Magnetic Resonance Imaging: Mri Instrumentation And Clinical Implementation

Author: Shaileshkumar B. Raval, Ph.D.

Publisher: Index of Sciences Ltd

Published: 2021-04-06

Total Pages: 340

ISBN-13: 1838088849

DOWNLOAD EBOOK

Magnetic Resonance Imaging“Magnetic Resonance Imaging” (MRI) is the most widely clinically used diagnostic tool for soft tissue imaging. This advanced technology and its applications are under continuous research and development, ranging from lower fields to ultra-high fields to the highest possible fields for preclinical (animal) and human imaging. Formerly known as Nuclear Magnetic Resonance Imaging (NMR), with the rising demands of clinical diagnosis requirements, it is under constant development and innovation in hospitals for populations around the world because of constant desire to go to higher fields that lead to unique research and clinical applications that aren’t achievable with other commercially and or research technologies. The basics of MRIThe human body is rich in hydrogen, when a human body is subjected to a large magnetic field, many of the free hydrogen nuclei align themselves with the direction of the magnetic field. MRI works on the principle of the directional magnetic field associated with charged particles in motion. MRI is also known as nuclear magnetic resonance imaging, a technique used to create images of parts of the human body based on the resonance of nuclei in motion under the effect of a magnetic field. Overview of the bookThis book’s lucid style makes it an easy read. It is written in a simple and comprehensible way, making it easy to followand readfor a large audience ranging from students to researchers. The areas covered include an overview of the theories and practical aspects of High-Field MRIwith each chapter Introduction, Challenges, Objectives, Methods(Materials), Results, Discussion, FutureWworks,including basic concepts, along with research-oriented and clinical concepts, technologies that are researched and developed, and implemented clinically, and published nationally and internationally recognized conferences, and publications with global awards recognition from ISMRM, TTS, and many other academic and industry organizationsthat are recognized worldwide. In this book, unexplored research theories are described along with a list of products, project developments, and completion of major and unattempted theories, which are considered to be challenging in high-field MRI. These unexplored research theories are further delved into to emerge with practical and translational products, as described in various chapters. These products are deemed to be of potential research and clinical use if implemented in clinical and hospital settings, to help thus could the patients as well as healthy populations to improve the standard of their lives. Advances in extremities and musculoskeletal imaging in patients undergoing transplants, including first-ever(never been implemented)technologies such as Ultra high field upper extremity RF coils, research publications, and intellectual properties have been explored in detail. Another major advancement discussed in this book is the Whole-body MRI RF high density transmit coil and receiver array designs(first evevr application of antenna design), published in national and international journals as intellectual properties. Various other aspects of these 4intellectual properties have been discussed such as instrumentation developed, design procedures, Electromagnetic Simulations (simulated versions), Novel whole head(Brain) MRI RF array, Innovative Visualization Techniques, Neuro and vascular flow imaging, Segmentation methods. Regenerative Imaging, Pre and post-operative (surgical) imaging, clinical implementations, pulse sequence developments and optimizations, imaging resultswith 3D volume Texture and Visualizations, also peer research and references from around the world, plus future works, and more have been entailed. This is a rather different book in terms of depth and detail in which the subject is dealt with in this book. The data is well represented with tables, equations, and nearly three hundred figures. Combining technologies, research, and clinical applications of innovations in the field of MRI, it is one of a kind and a treat for curious minds. The content is mainly focused on whole head imaging, whole-body imaging, and extremity imaging, describing their clinical applications and their implementation for high risk and high demand patient populations, healthy populations for enhanced human anatomical, biological, functional and physiological performances in a detailed manner. The research has been utilized by peers in their studies, research, publications, and learning as part of the research and clinical developments, and implementations. This book presents the author’s original research works and their applications in the real world to offer advanced innovations to the healthcare sector and improve quality and standard of life for the masses around the world and beyond as future goals as there are many aviations,Biomedical Applications and projects are in demand. The author’s research works have been publishedand awarded in various nationalllyand internationallyrecognized journals and presented in numerous conferences as well. The chapters of this book are each one of the many research publications by the author


Advanced Neuro MR Techniques and Applications

Advanced Neuro MR Techniques and Applications

Author: In-Young Choi

Publisher: Academic Press

Published: 2021-11-17

Total Pages: 640

ISBN-13: 0128224959

DOWNLOAD EBOOK

Advanced Neuro MR Techniques and Applications gives detailed knowledge of emerging neuro MR techniques and their specific clinical and neuroscience applications, showing their pros and cons over conventional and currently available advanced techniques. The book identifies the best available data acquisition, processing, reconstruction and analysis strategies and methods that can be utilized in clinical and neuroscience research. It is an ideal reference for MR scientists and engineers who develop MR technologies and/or support clinical and neuroscience research and for high-end users who utilize neuro MR techniques in their research, including clinicians, neuroscientists and psychologists. Trainees such as postdoctoral fellows, PhD and MD/PhD students, residents and fellows using or considering the use of neuro MR technologies will also be interested in this book. Presents a complete reference on advanced Neuro MR Techniques and Applications Edited and written by leading researchers in the field Suitable for a broad audience of MR scientists and engineers who develop MR technologies, as well as clinicians, neuroscientists and psychologists who utilize neuro MR techniques in their research


Ultra High Field Magnetic Resonance Imaging

Ultra High Field Magnetic Resonance Imaging

Author: Pierre-Marie Robitaille

Publisher: Springer Science & Business Media

Published: 2007-12-31

Total Pages: 487

ISBN-13: 0387496483

DOWNLOAD EBOOK

The foundation for understanding the function and dynamics of biological systems is not only knowledge of their structure, but the new methodologies and applications used to determine that structure. This volume in Biological Magnetic Resonance emphasizes the methods that involve Ultra High Field Magnetic Resonance Imaging. It will interest researchers working in the field of imaging.


Ultrahigh Field Magnetic Resonance Imaging

Ultrahigh Field Magnetic Resonance Imaging

Author: Judy Alper

Publisher:

Published: 2016

Total Pages: 94

ISBN-13:

DOWNLOAD EBOOK

Magnetic resonance imaging (MRI) may be used to provide detailed images of the human body with excellent soft tissue contrast. Alongside its current widespread clinical applications for diagnosis and treatment, MRI allows researchers to measure structure and function of different tissue types in order to advance our understanding of human biology and enable new medical applications of MRI. In particular, diseases affecting nerves and vessels, such as trigeminal neuralgia, with uncertain etiology can be studied using multiple MRI modalities so that treatment planning can we more effective and patient outcomes can be improved. Ultrahigh field MRI scanners, such as those operating at 7-‐tesla (7T), provide increased signal-‐to-‐noise ratio, which can be translated to higher spatial resolution. Additional advantages of high magnetic field MRI include enhanced vascular contrast as well as improved spectral separation and quantification for MR spectroscopy. These benefits over MRI at lower field strengths make ultrahigh field MRI a powerful new tool for performing quantitative image analysis with increased accuracy. One quantitative application of MRI is the detection and visualization of cells labeled with magnetic nanoparticles. This unconventional use of the imaging modality enables very effective imaging of cells or lesions tagged with these particles. The projects explored herein consist of such quantitative image analysis using advanced imaging techniques, including ultrahigh field MRI.


Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging

Author: Rakesh Sharma

Publisher: BoD – Books on Demand

Published: 2012-05-09

Total Pages: 228

ISBN-13: 9535105418

DOWNLOAD EBOOK

"Functional Magnetic Resonance Imaging - Advanced Neuroimaging Applications" is a concise book on applied methods of fMRI used in assessment of cognitive functions in brain and neuropsychological evaluation using motor-sensory activities, language, orthographic disabilities in children. The book will serve the purpose of applied neuropsychological evaluation methods in neuropsychological research projects, as well as relatively experienced psychologists and neuroscientists. Chapters are arranged in the order of basic concepts of fMRI and physiological basis of fMRI after event-related stimulus in first two chapters followed by new concepts of fMRI applied in constraint-induced movement therapy; reliability analysis; refractory SMA epilepsy; consciousness states; rule-guided behavioral analysis; orthographic frequency neighbor analysis for phonological activation; and quantitative multimodal spectroscopic fMRI to evaluate different neuropsychological states.


Handbook of MRI Pulse Sequences

Handbook of MRI Pulse Sequences

Author: Matt A. Bernstein

Publisher: Elsevier

Published: 2004-09-21

Total Pages: 1041

ISBN-13: 0080533124

DOWNLOAD EBOOK

Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI Provides self-contained sections for individual techniques Can be used as a quick reference guide or as a resource for deeper study Includes both non-mathematical and mathematical descriptions Contains numerous figures, tables, references, and worked example problems


Translational Research in Traumatic Brain Injury

Translational Research in Traumatic Brain Injury

Author: Daniel Laskowitz

Publisher: CRC Press

Published: 2016-04-21

Total Pages: 388

ISBN-13: 1498766579

DOWNLOAD EBOOK

Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme