Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials

Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials

Author: Kumar, Kaushik

Publisher: IGI Global

Published: 2021-11-19

Total Pages: 458

ISBN-13: 179987866X

DOWNLOAD EBOOK

In the automotive industry, the need to reduce vehicle weight has given rise to extensive research efforts to develop aluminum and magnesium alloys for structural car body parts. In aerospace, the move toward composite airframe structures urged an increased use of formable titanium alloys. In steel research, there are ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient and reliable lightweight steel components. All these materials, and more, constitute today’s research mission for lightweight structures. They provide a fertile materials science research field aiming to achieve a better understanding of the interplay between industrial processing, microstructure development, and the resulting material properties. The Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials provides the recent advancements in the lightweight mat materials processing, manufacturing, and characterization. This book identifies the need for modern tools and techniques for designing lightweight materials and addresses multidisciplinary approaches for applying their use. Covering topics such as numerical optimization, fatigue characterization, and process evaluation, this text is an essential resource for materials engineers, manufacturers, practitioners, engineers, academicians, chief research officers, researchers, students, and vice presidents of research in government, industry, and academia.


Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials

Handbook of Research on Advancements in the Processing, Characterization, and Application of Lightweight Materials

Author: Kaushik Kumar

Publisher: Engineering Science Reference

Published: 2021-11-19

Total Pages: 0

ISBN-13: 9781799878643

DOWNLOAD EBOOK

"This book of contributed chapters will provide the resources necessary for processing, characterization and manufacturing using lightweight materials across the globe, offering recent advances in the field of light weight material usage and its recent developments"--


Modeling, Characterization, and Production of Nanomaterials

Modeling, Characterization, and Production of Nanomaterials

Author: Vinod Tewary

Publisher: Woodhead Publishing

Published: 2022-11-09

Total Pages: 628

ISBN-13: 0128199199

DOWNLOAD EBOOK

Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green's function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. - Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures - Focuses on practical applications and industry needs through a solid outlining of the theoretical background - Includes emerging nanomaterials and their applications in spintronics and sensing


Modeling, Characterization, and Processing of Smart Materials

Modeling, Characterization, and Processing of Smart Materials

Author: Kumar, Ajay

Publisher: IGI Global

Published: 2023-08-07

Total Pages: 390

ISBN-13: 1668492261

DOWNLOAD EBOOK

The development, processing, and applications of smart materials presents many challenges, including performance correlations to the nature of their reinforcement and the sustainability of such materials through their recyclability, durability, and reparability. Experts have identified the challenge of achieving sustainable development and in this book highlight how smart materials can provide a solution to the problem. It emphasizes the multidisciplinary nature of smart materials and their potential for enhancing product functionalities and capabilities in different sectors, including the biomedical, pharmaceutical, aerospace, construction, automotive, and food industries. Modeling, Characterization, and Processing of Smart Materials proposes a comprehensive guide to addressing the challenges associated with smart materials, including the need for optimization and sustainability, and provides various nature-inspired algorithms, computational and simulation approaches, and artificial intelligence-based strategies for developing innovative smart materials. It also presents potential solutions for the limitations of smart materials and emphasizes the role of Industry 4.0 in maintaining their sustainability. Overall, this book offers a valuable problem-solution perspective on the development and applications of smart materials, making it an essential reference guide for academic researchers and industrial engineers in the fields of material science, chemical engineering, and environmental engineering.


Modeling, Characterization and Production of Nanomaterials

Modeling, Characterization and Production of Nanomaterials

Author:

Publisher: Elsevier

Published: 2015-03-17

Total Pages: 555

ISBN-13: 1782422358

DOWNLOAD EBOOK

Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world


Exploring Nanomaterial Synthesis, Characterization, and Applications

Exploring Nanomaterial Synthesis, Characterization, and Applications

Author: Ramaswamy, Krishnaraj

Publisher: IGI Global

Published: 2024-10-22

Total Pages: 654

ISBN-13:

DOWNLOAD EBOOK

Nanomaterials, due to their tiny size and exceptional characteristics, are leading the way in scientific innovation, marking the beginning of a new era of technological progress and offering solutions to critical challenges faced by humanity. From their origin and theoretical foundations to their combination and extensive practical uses, the exploration of nanomaterials encompasses a wide range of knowledge and profound understanding, providing valuable perspectives on their revolutionary influence on different sectors of the economy. Nanomaterials possess distinctive characteristics, including enhanced strength, chemical reactivity, and electrical conductivity, distinguishing them from their larger counterparts. These characteristics stimulate innovative uses and improve current technologies, making them crucial in advancing engineering, medicine, energy solutions, and environmental sustainability. Exploring Nanomaterial Synthesis, Characterization, and Applications focuses on the interdisciplinary aspects of nanomaterials research and highlights their contributions to the advancement of medical science. This book offers a comprehensive overview of the present state of nanomaterial science and provide a glimpse into its promising future. Covering topics such as biosensing, energy storage, and pharmaceutical technology, this book is an excellent resource for academicians, researchers, graduate and postgraduate students, industry professionals, engineers, product developers, medical practitioners, policymakers, and more.


Preparation, Characterization, Properties, and Application of Nanofluid

Preparation, Characterization, Properties, and Application of Nanofluid

Author: I. M. Mahbubul

Publisher: William Andrew

Published: 2018-09-20

Total Pages: 375

ISBN-13: 012813299X

DOWNLOAD EBOOK

Preparation, Characterization, Properties and Application of Nanofluid begins with an introduction of colloidal systems and their relation to nanofluid. Special emphasis on the preparation of stable nanofluid and the impact of ultrasonication power on nanofluid preparation is also included, as are characterization and stability measurement techniques. Other topics of note in the book include the thermophysical properties of nanofluids as thermal conductivity, viscosity, and density and specific heat, including the figure of merit of properties. In addition, different parameters, like particle type, size, concentration, liquid type and temperature are discussed based on experimental results, along with a variety of other important topics. The available model and correlations used for nanofluid property calculation are also included. - Provides readers with tactics on nanofluid preparation methods, including how to improve their stability - Explores the effect of preparation method and stability on thermophysical and rheological properties of nanofluids - Assesses the available model and correlations used for nanofluid property calculation


Advanced Materials Characterization

Advanced Materials Characterization

Author: Ch Sateesh Kumar

Publisher: CRC Press

Published: 2023-05-04

Total Pages: 152

ISBN-13: 1000872335

DOWNLOAD EBOOK

The book covers various methods of characterization of advanced materials commonly used in engineering including understanding of the working principle and applicability of devices. It explores the techniques implemented for advanced materials like superalloys, thin films, powders, nanocomposites, polymers, shape memory alloys, high entropy alloys, and so on. Major instruments covered include X-ray diffraction, near-field scanning optical microscopy Raman, X-ray photospectroscopy, ultraviolet-visible-near-infrared spectrosphotometer, Fourier-transform infrared spectroscopy, differential scanning calorimeter, profilometer, and thermogravimetric analysis. Features: Covers material characterization techniques and the development of advanced characterization technology Includes multiple length scale characterization approaches for a large variety of materials, from nano- to micron-scale, as well as their constraints Discusses advanced material characterization technology in the microstructural and property characterization fields Reviews both practical and theoretical explanations of approaches for characterizing microstructure and properties Offers fundamentals, basic instrumentation details, experimental approaches, analyses, and applications with case studies This book is aimed at graduate students and researchers in materials science and engineering.


Advanced Characterization Techniques for Thin Film Solar Cells

Advanced Characterization Techniques for Thin Film Solar Cells

Author: Daniel Abou-Ras

Publisher: John Wiley & Sons

Published: 2016-07-13

Total Pages: 760

ISBN-13: 352769904X

DOWNLOAD EBOOK

The book focuses on advanced characterization methods for thin-film solar cells that have proven their relevance both for academic and corporate photovoltaic research and development. After an introduction to thin-film photovoltaics, highly experienced experts report on device and materials characterization methods such as electroluminescence analysis, capacitance spectroscopy, and various microscopy methods. In the final part of the book simulation techniques are presented which are used for ab-initio calculations of relevant semiconductors and for device simulations in 1D, 2D and 3D. Building on a proven concept, this new edition also covers thermography, transient optoelectronic methods, and absorption and photocurrent spectroscopy.


CMOS RF Modeling, Characterization and Applications

CMOS RF Modeling, Characterization and Applications

Author: M. Jamal Deen

Publisher: World Scientific

Published: 2002

Total Pages: 426

ISBN-13: 9789810249052

DOWNLOAD EBOOK

CMOS technology has now reached a state of evolution, in terms of both frequency and noise, where it is becoming a serious contender for radio frequency (RF) applications in the GHz range. Cutoff frequencies of about 50 GHz have been reported for 0.18 æm CMOS technology, and are expected to reach about 100 GHz when the feature size shrinks to 100 nm within a few years. This translates into CMOS circuit operating frequencies well into the GHz range, which covers the frequency range of many of today's popular wireless products, such as cell phones, GPS (Global Positioning System) and Bluetooth. Of course, the great interest in RF CMOS comes from the obvious advantages of CMOS technology in terms of production cost, high-level integration, and the ability to combine digital, analog and RF circuits on the same chip. This book discusses many of the challenges facing the CMOS RF circuit designer in terms of device modeling and characterization, which are crucial issues in circuit simulation and design.