Advances in Wind Turbine Blade Design and Materials

Advances in Wind Turbine Blade Design and Materials

Author: Povl Brondsted

Publisher: Elsevier

Published: 2013-10-31

Total Pages: 485

ISBN-13: 0857097288

DOWNLOAD EBOOK

Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world's consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades.Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics. - Reviews the design and functionality of wind turbine rotor blades - Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades - Provides an invaluable reference for researchers and innovators in the field of wind energy production


Advances in Wind Turbine Blade Design and Materials

Advances in Wind Turbine Blade Design and Materials

Author: Povl Brondsted

Publisher: Woodhead Publishing

Published: 2013-10-31

Total Pages: 0

ISBN-13: 9780857094261

DOWNLOAD EBOOK

Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world's consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics.


Advances in Wind Turbine Blade Design and Materials

Advances in Wind Turbine Blade Design and Materials

Author: Povl Brondsted

Publisher: Woodhead Publishing

Published: 2023-01-14

Total Pages: 516

ISBN-13: 0081030088

DOWNLOAD EBOOK

Advances in Wind Turbine Blade Design and Materials, Second Edition, builds on the thorough review of the design and functionality of wind turbine rotor blades and the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. - Reviews the design and functionality of wind turbine rotor blades - Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades - Provides an invaluable reference for researchers and innovators in the field of wind


MARE-WINT

MARE-WINT

Author: Wiesław Ostachowicz

Publisher: Springer

Published: 2016-08-30

Total Pages: 432

ISBN-13: 3319390953

DOWNLOAD EBOOK

This book provides a holistic, interdisciplinary overview of offshore wind energy, and is a must-read for advanced researchers. Topics, from the design and analysis of future turbines, to the decommissioning of wind farms, are covered. The scope of the work ranges from analytical, numerical and experimental advancements in structural and fluid mechanics, to novel developments in risk, safety & reliability engineering for offshore wind.The core objective of the current work is to make offshore wind energy more competitive, by improving the reliability, and operations and maintenance (O&M) strategies of wind turbines. The research was carried out under the auspices of the EU-funded project, MARE-WINT. The project provided a unique opportunity for a group of researchers to work closely together, undergo multidisciplinary doctoral training, and conduct research in the area of offshore wind energy generation. Contributions from expert, external authors are also included, and the complete work seeks to bridge the gap between research and a rapidly-evolving industry.


Assessment of Research Needs for Wind Turbine Rotor Materials Technology

Assessment of Research Needs for Wind Turbine Rotor Materials Technology

Author: Committee on Assessment of Research Needs for Wind Turbine Rotor Materials Technology

Publisher: National Academies Press

Published: 1991-01-15

Total Pages: 119

ISBN-13: 0309583187

DOWNLOAD EBOOK

Wind-driven power systems represent a renewable energy technology. Arrays of interconnected wind turbines can convert power carried by the wind into electricity. This book defines a research and development agenda for the U.S. Department of Energy's wind energy program in hopes of improving the performance of this emerging technology.


Advances in Wind Power

Advances in Wind Power

Author: Rupp Carriveau

Publisher: BoD – Books on Demand

Published: 2012-11-21

Total Pages: 378

ISBN-13: 9535108638

DOWNLOAD EBOOK

Today's wind energy industry is at a crossroads. Global economic instability has threatened or eliminated many financial incentives that have been important to the development of specific markets. Now more than ever, this essential element of the world energy mosaic will require innovative research and strategic collaborations to bolster the industry as it moves forward. This text details topics fundamental to the efficient operation of modern commercial farms and highlights advanced research that will enable next-generation wind energy technologies. The book is organized into three sections, Inflow and Wake Influences on Turbine Performance, Turbine Structural Response, and Power Conversion, Control and Integration. In addition to fundamental concepts, the reader will be exposed to comprehensive treatments of topics like wake dynamics, analysis of complex turbine blades, and power electronics in small-scale wind turbine systems.


Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials

Author: R.P.L. Nijssen

Publisher: Elsevier Inc. Chapters

Published: 2013-10-31

Total Pages: 43

ISBN-13: 0128089172

DOWNLOAD EBOOK

Composites have been the material of choice for wind turbine blade construction for several decades. This chapter explains why. It also shows how wind turbine blade materials and our understanding of their fatigue behaviour have developed recently, and the gaps that still exist in the knowledge. The chapter discusses why fatigue is a predominant design driver for wind turbine blades. The main structural elements of the blade (load bearing components and aerodynamic shell) are considered in terms of material and design requirements, and fundamental research questions are addressed. Finally, there is a comment on current and future trends, as well as a list of recommended reading.


Innovation in Wind Turbine Design

Innovation in Wind Turbine Design

Author: Peter Jamieson

Publisher: John Wiley & Sons

Published: 2018-03-12

Total Pages: 467

ISBN-13: 1119137942

DOWNLOAD EBOOK

Aktualisiert und erweiterte Neuauflage dieses umfassenden Leitfadens zu Innovationen in der Entwicklung von Windkraftanlagen Die 2. Auflage von Innovation in Wind Turbine Design beschäftigt sich im Detail mit den Designgrundlagen, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten. Die 2. Auflage wurde wesentlich erweitert und insgesamt aktualisiert. Neue Inhalte befassen sich mit den theoretischen Grundlagen von Antriebsscheiben in Bezug auf induktionsarme Rotoren. Wesentlich erweitert wurden die Abschnitte zu Offshore-Fragen und Flugwindkraftsystemen. Aktualisierte Inhalte beziehen sich auf Antriebsstränge und die grundlegende Theorie von Planetengetrieben und Differenzialgetrieben. Die Grundlagen der Windenergie und Irrtümer hinsichtlich des Designs von Rotoren mit Luftkanälen, Labor- und Feldtests der Rotorsysteme Katru und Wind Lens werden deutlicher herausgearbeitet. LiDAR wird kurz vorgestellt, ebenso die neuesten Entwicklungen beim Multi-Rotor-Konzept, darunter das Vier-Rotor-System von Vestas. Ein neues Kapitel beschäftigt sich mit dem innovativen DeepWind VAWT. Das Buch ist in vier Hauptabschnitte gegliedert: Hintergrundinformationen zu Designs, Technologiebewertung, Designthemen und innovative Technologiebeispiele. Wichtige Merkmale: - Stark erweiterte und um neue Inhalte ergänzt. - Deckt die Designgrundlagen umfassend ab, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten. - Enthält innovative Beispiele aus der Praxis. - Jetzt mit Informationen zu den neuesten Entwicklungen in dem Fachgebiet. Dieses Buch ist ein Muss für Windkraftingenieure, Energieingenieure und Turbinenentwickler, Berater, Forscher und Studenten höherer Semester.


Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials

Author: F. Mølholt Jensen

Publisher: Elsevier Inc. Chapters

Published: 2013-10-31

Total Pages: 36

ISBN-13: 0128089121

DOWNLOAD EBOOK

An overview of the current and future trends in wind turbine blade structural design process is presented. The main design principles and failure mechanisms of blades in operation are assessed and explained through an industry point of view, in a realistic manner. A number of failure modes which are not addressed sufficiently in the certificate guidelines are presented. An example on how to use the new design philosophy is presented. The manufactured prototype is a 44m long load carrying spar and the weight is reduced by 40%.


Advances in wind turbine blade design and materials

Advances in wind turbine blade design and materials

Author: A.P. Vassilopoulos

Publisher: Elsevier Inc. Chapters

Published: 2013-10-31

Total Pages: 55

ISBN-13: 0128089199

DOWNLOAD EBOOK

Fatigue life prediction of wind turbine rotor blades is a very challenging task, as blade failure is led by different failure types that act synergistically. Inherent defects like wrinkles, fiber misalignments and voids, that can be introduced during fabrication, can constitute potential damage initiation points and rapidly develop to failure mechanisms like matrix cracking, transverse-ply cracking, interface cracking, debonding, fiber breakage, etc. Different methods have been established to address this problem, some based on phenomenological and others on actual damage mechanics modeling. This chapter aims to provide an overview of fatigue life modeling and prediction methodologies for the composite materials and structural composite elements that compose a wind turbine rotor blade under complex loading conditions.