This brief broadens readers’ understanding of stochastic control by highlighting recent advances in the design of optimal control for Markov jump linear systems (MJLS). It also presents an algorithm that attempts to solve this open stochastic control problem, and provides a real-time application for controlling the speed of direct current motors, illustrating the practical usefulness of MJLS. Particularly, it offers novel insights into the control of systems when the controller does not have access to the Markovian mode.
This will be the most up-to-date book in the area (the closest competition was published in 1990) This book takes a new slant and is in discrete rather than continuous time
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.
The book consists of recent works on several axes either with a more theoretical nature or with a focus on applications, which will span a variety of up-to-date topics in the field of systems and control. The main market area of the contributions include: Advanced fault-tolerant control, control reconfiguration, health monitoring techniques for industrial systems, data-driven diagnosis methods, process supervision, diagnosis and control of discrete-event systems, maintenance and repair strategies, statistical methods for fault diagnosis, reliability and safety of industrial systems artificial intelligence methods for control and diagnosis, health-aware control design strategies, advanced control approaches, deep learning-based methods for control and diagnosis, reinforcement learning-based approaches for advanced control, diagnosis and prognosis techniques applied to industrial problems, Industry 4.0 as well as instrumentation and sensors. These works constitute advances in the aforementioned scientific fields and will be used by graduate as well as doctoral students along with established researchers to update themselves with the state of the art and recent advances in their respective fields. As the book includes several applicative studies with several multi-disciplinary contributions (deep learning, reinforcement learning, model-based/data-based control etc.), the book proves to be equally useful for the practitioners as well industrial professionals.
The 2016 International Conference on Materials Science, Energy Technology and Environmental Engineering (MSETEE 2016) took place May 28-29, 2016 in Zhuhai City, China. MSETEE 2016 brought together academics and industrial experts in the field of materials science, energy technology and environmental engineering. The primary goal of the conference was to promote research and developmental activities in these research areas and to promote scientific information interchange between researchers, developers, engineers, students, and practitioners working around the world. The conference will be held every year serving as platform for researchers to share views and experience in materials science, energy technology and environmental engineering and related areas.
This Proceedings contains the papers presented at the IFAC Symposium on Robust Control Design held in Prague on 21 - 23 June 2000. The technical program included 21 sessions on robust control and related topics in identification and signal processing. The methods presented in these sessions included linear matrix inequalities, polynomial techniques, sliding modes, optimal control, fuzzy and adaptive control. Attention was also paid to linear as well as nonlinear systems. The highlights of the technical program were two plenary lectures by J. Geromel (Universidade Estadual de Campinas, Brazil) and H. Kwakernaak (University of Twente, The Netherlands).
This book presents analysis and design for a class of stochastic systems with semi-Markovian jump parameters. It explores systematic analysis of semi-Markovian jump systems via sliding mode control strategy which makes up the shortages in the analysis and design of stochastic systems. This text provides a novel estimation method to deal with the stochastic stability of semi-Markovian jump systems along with design of novel integral sliding surface. Finally, Takagi-Sugeno fuzzy model approach is brought to deal with system nonlinearities and fuzzy sliding mode control laws are provided to ensure the stabilization purpose. Features: Presents systematic work on sliding mode control (SMC) of semi-Markvoain jump systems. Explores SMC methods, such as fuzzy SMC, adaptive SMC, with the presence of generally uncertain transition rates. Provides novel method in dealing with stochastic systems with unknown switching information. Proposes more general theories for semi-Markovian jump systems with generally uncertain transition rates. Discusses practical examples to verify the effectiveness of SMC theory in semi-Markovian jump systems. This book aims at graduate and postgraduate students and for researchers in all engineering disciplines, including mechanical engineering, electrical engineering and applied mathematics, control engineering, signal processing, process control, control theory and robotics.
"Smart Embedded Systems: Advances and Applications" is a comprehensive guide that demystifies the complex world of embedded technology. The book journeys through a wide range of topics from healthcare to energy management, autonomous robotics, and wireless communication, showcasing the transformative potential of intelligent embedded systems in these fields. This concise volume introduces readers to innovative techniques and their practical applications, offers a comparative analysis of wireless protocols, and provides efficient resource allocation strategies in IoT-based ecosystems. With real-world examples and in-depth case studies, it serves as an invaluable resource for students and professionals seeking to harness the power of embedded technology to shape our digital future. Salient Features: The book provides a comprehensive coverage of various aspects of smart embedded systems, exploring their design, implementation, optimization, and a range of applications. This is further enhanced by in-depth discussions on hardware and software optimizations aimed at improving overall system performance. A detailed examination of machine learning techniques specifically tailored for data analysis and prediction within embedded systems. This complements the exploration of cutting-edge research on the use of AI to enhance wireless communications. Real-world applications of these technologies are extensively discussed, with a focus on areas such as seizure detection, noise reduction, health monitoring, diabetic care, autonomous vehicles, and communication systems. This includes a deep-dive into different wireless protocols utilized for data transfer in IoT systems. This book highlights key IoT technologies and their myriad applications, extending from environmental data collection to health monitoring. This is underscored by case studies on the integration of AI and IoT in healthcare, spanning topics from anomaly detection to informed clinical decision-making. Also featured is a detailed evaluation and comparison of different system implementations and methodologies This book is an essential read for anyone interested in the field of embedded systems. Whether you're a student looking to broaden your knowledge base, researchers looking in-depth insights, or professionals planning to use this cutting-edge technology in real-world applications, this book offers a thorough grounding in the subject.
The book addresses the control issues such as stability analysis, control synthesis and filter design of Markov jump systems with the above three types of TPs, and thus is mainly divided into three parts. Part I studies the Markov jump systems with partially unknown TPs. Different methodologies with different conservatism for the basic stability and stabilization problems are developed and compared. Then the problems of state estimation, the control of systems with time-varying delays, the case involved with both partially unknown TPs and uncertain TPs in a composite way are also tackled. Part II deals with the Markov jump systems with piecewise homogeneous TPs. Methodologies that can effectively handle control problems in the scenario are developed, including the one coping with the asynchronous switching phenomenon between the currently activated system mode and the controller/filter to be designed. Part III focuses on the Markov jump systems with memory TPs. The concept of σ-mean square stability is proposed such that the stability problem can be solved via a finite number of conditions. The systems involved with nonlinear dynamics (described via the Takagi-Sugeno fuzzy model) are also investigated. Numerical and practical examples are given to verify the effectiveness of the obtained theoretical results. Finally, some perspectives and future works are presented to conclude the book.
This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.