Advances in Sustainable Biomaterials

Advances in Sustainable Biomaterials

Author: Ajay Kumar

Publisher: CRC Press

Published: 2024-10-28

Total Pages: 391

ISBN-13: 104015400X

DOWNLOAD EBOOK

Sustainable biomaterials are used as substitutions for traditional materials in aerospace, automotive, civil, mechanical, environmental engineering, medical, and other industries. This book presents the current knowledge and recent developments on the characterization and application of sustainable biomaterials with biomanufacturing 4.0 techniques. The book also describes the unique properties of various classes of sustainable biomaterials, making them highly suitable for many industrial applications. Advances in Sustainable Biomaterials: Bioprocessing 4.0, Characterizations, and Applications presents key chapters on smart biopolymer composites production and processing methods and provides a wide range of applications in a variety of fields such as medical, food, agriculture, electronics, manufacturing, and chemical engineering. The book features the most recent and detailed information on advancements in biopolymer biomaterials and emphasizes synthesis, characterization, modeling, manufacturing, and testing strategies. Written to be used as a resource guide on biomaterials and innovations, undergraduate and postgraduate students studying manufacturing and materials science will find this book very useful in addition to those working in mechanical engineering, biomedical engineering, manufacturing of pharmaceuticals, biotechnology, and electronics engineering fields. The book can also be used as additional classroom reading for an advanced course on biomaterials modeling and optimization.


Advances in Sustainable Materials

Advances in Sustainable Materials

Author: Ajay Kumar

Publisher: Elsevier

Published: 2024-11-05

Total Pages: 587

ISBN-13: 0443138486

DOWNLOAD EBOOK

Advances in Sustainable Materials: Fundamentals, Modelling and Characterization provides a comprehensive review of recent technological developments and research accomplishments in this important field. The chapters cover characterization techniques, modeling of sustainable materials, the role of artificial intelligence, Industry 4.0, nature-inspired algorithms, and optimization possibilities. Various computational and simulation approaches for maintaining the sustainability of materials are also covered in detail. In addition to the above, various case studies are also included on the application of sustainable materials in medical, environmental, production, mechanical, and civil engineering. This collection of state-of-the-art techniques, with an emphasis on using various analytical strategies, and computational and simulation approaches, as well as artificial intelligence will encourage researchers, as well as manufacturers to develop more innovative sustainable materials. - Covers various types of sustainable materials, including polymers, metals, ceramics, composites, biomaterials, biodegradable materials, smart materials, and functionally graded materials - Focuses on characterization, modeling, and applications of sustainable materials - Describes the outstanding properties of various classes of materials and their suitability for different types of industrial applications


Advances in Applications of Industrial Biomaterials

Advances in Applications of Industrial Biomaterials

Author: Eva Pellicer

Publisher: Springer

Published: 2017-07-25

Total Pages: 220

ISBN-13: 3319627678

DOWNLOAD EBOOK

This book presents recent advances in the development of biomaterials for industrial applications, and discusses the potential for substituting environmentally hazardous substances with environmentally friendly and degradable components. Focusing on both the material development and production technologies, it reviews different materials, as well as new production technologies and application areas. It also highlights the importance of incorporating organic materials into different composites to enable consumption of otherwise waste materials. Further it addresses biopolymers for the food industry, e.g. edible films and coatings in food production and biodegradable materials; the automotive industry; bio fuels, such as biodiesel based on organic constituents; and green composites in marine applications. Environmental protection aspects related to the protection of cultural heritage, and new nanoparticles, such as nano zerovalent iron, are also reviewed. Aimed at young research ers, professionals, chemical engineers and marine engineers, the book is the result of the joint efforts of different academic and research institutions participating in the WIMB Tempus project, 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES, “Development of Sustainable Interrelations between Education, Research and Innovation at WBC Universities in Nanotechnologies and Advanced Materials where Innovation Means Business”, co-funded by the European Union Tempus Program.


Advances in Sustainable Polymers

Advances in Sustainable Polymers

Author: Vimal Katiyar

Publisher: Springer Nature

Published: 2019-11-05

Total Pages: 496

ISBN-13: 9813298049

DOWNLOAD EBOOK

This book provides a systematic overview of the processing and applications of sustainable polymers. The volume covers recent advances in biomedical, food packaging, fuel cell, membrane, and other emerging applications. The book begins by addressing different sections of biomedical application including use of carbohydrate-based therapeutics, nanohybrids, nanohydrogels, bioresorbable polymers and their composites, polymer-grafted nanobiomaterials for biomedical devices and implants, nanofibres, and others. The second part of this book discusses various processing and packaging materials for food packaging applications. The last section discusses other emerging applications, including using microbial fuel cells for waste water treatment, microfluidic fuel cells for low power applications, among others. This volume will be relevant to researchers working to improve the properties of bio-based materials for their advanced application and wide commercialization.


Introduction to Renewable Biomaterials

Introduction to Renewable Biomaterials

Author: Ali S. Ayoub

Publisher: John Wiley & Sons

Published: 2017-11-13

Total Pages: 286

ISBN-13: 1119962293

DOWNLOAD EBOOK

Covers the entire evolutionary spectrum of biomass, from its genetic modification and harvesting, to conversion technologies, life cycle analysis, and its value to the current global economy This original textbook introduces readers to biomass—a renewable resource derived from forest, agriculture, and organic-based materials—which has attracted significant attention as a sustainable alternative to petrochemicals for large-scale production of fuels, materials, and chemicals. The current renaissance in the manipulation and uses of biomass has been so abrupt and focused, that very few educational textbooks actually cover these topics to any great extent. That’s why this interdisciplinary text is a welcome resource for those seeking a better understanding of this new discipline. It combines the underpinning science of biomass with technology applications and sustainability considerations to provide a broad focus to its readers. Introduction to Renewable Biomaterials: First Principles and Concepts consists of eight chapters on the following topics: fundamental biochemical & biotechnological principles; principles and methodologies controlling plant growth and silviculture; fundamental science and engineering considerations; critical considerations and strategies for harvesting; first principles of pretreatment; conversion technologies; characterization methods and techniques; and life cycle analysis. Each chapter includes a glossary of terms, two to three problem sets, and boxes to highlight novel discoveries and instruments. Chapters also offer questions for further consideration and suggestions for further reading. Developed from a successful USDA funded course, run by a partnership of three US universities: BioSUCEED - BioProducts Sustainability, a University Cooperative Center for Excellence in Education Covers the entire evolutionary spectrum of biomass, from genetic modification to life cycle analysis Presents the key chemistry, biology, technology, and sustainability aspects of biomaterials Edited by a highly regarded academic team, with extensive research and teaching experience in the field Introduction to Renewable Biomaterials: First Principles and Concepts is an ideal text for advanced academics and industry professionals involved with biomass and renewable resources, bioenergy, biorefining, biotechnology, materials science, sustainable chemistry, chemical engineering, crop science and technology, agriculture.


Advanced Green Materials

Advanced Green Materials

Author: Shakeel Ahmed

Publisher: Woodhead Publishing

Published: 2020-11-24

Total Pages: 494

ISBN-13: 0128226757

DOWNLOAD EBOOK

Advanced Green Materials: Fabrication, Characterization and Applications of Biopolymers and Biocomposites looks at their extraction, purification, modification, and processing for various industrial, biomedical, pharmaceutical, and construction applications. The book comprehensively summarizes recent technical research accomplishments in natural materials and discusses various aspects of natural materials from a chemistry/engineering point of view. The book is unique with contributions from experts working on hybrid biopolymers and bio- composites, bioactive and biodegradable materials, bio-inert polymers and composites, natural polymer and composites, and metallic natural materials. The book will be a useful reference for scientists, academicians, research scholars, and biotechnologists. Advanced biocomposite materials continue to become increasingly popular and important for a broad range of different science and engineering applications. In the race to exploit the unique mechanical, thermal, and electrical properties of these materials, researchers must also address new challenges to predict, understand, and manage the potentially adverse effects they could have on the environment and human lives. The book describes recent developments and applications of biopolymers and biocomposites for applications in various industrial fields. Chapters include original research and the latest reviews in similar fields. Biopolymers and biocomposites occupy an exceptional position in the exciting new world of novel biomaterials. Considering their sustainability, non-toxic properties, and their ability to have tailored properties and functions, they should be considered as a smart candidate in the advancement of biomaterials technology. - Covers all types of biopolymers and advanced industrial applications, from packaging to biomedical therapeutics - Discusses the shift from research to industrial large-scale application of biopolymers and biocomposites - Emphasizes new strategic trends, such as bio-based and biodegradable additives for bioplastics, PHAs, new lignin-based biopolymers, and new polymers based on terpenes and biosensor applications


Biomaterials in Clinical Practice

Biomaterials in Clinical Practice

Author: Fatima Zivic

Publisher: Springer

Published: 2017-10-20

Total Pages: 823

ISBN-13: 3319680250

DOWNLOAD EBOOK

This book covers the properties of biomaterials that have found wide clinical applications, while also reviewing the state-of-the-art in the development towards future medical applications, starting with a brief introduction to the history of biomaterials used in hip arthroplasty. The book then reviews general types of biomaterials – polymers, ceramics, and metals, as well as different material structures such as porous materials and coatings and their applications – before exploring various current research trends, such as biodegradable and porous metals, shape memory alloys, bioactive biomaterials and coatings, and nanometals used in the diagnosis and therapy of cancer. In turn, the book discusses a range of methods and approaches used in connection with biomaterial properties and characterization – chemical properties, biocompatibility, in vivo behaviour characterisation, as well as genotoxicity and mutagenicity – and reviews various diagnostic techniques: histopathological analysis, imagining techniques, and methods for physicochemical and spectroscopic characterization. Properties of stent deployment procedures in cardiovascular surgeries, from aspects of prediction, development and deployment of stent geometries are presented on the basis of novel modelling approaches. The last part of the book presents the clinical applications of biomaterials, together with case studies in dentistry, knee and hip prosthesis. Reflecting the efforts of a multidisciplinary team of authors, gathering chemical engineers, medical doctors, physicists and engineers, it presents a rich blend of perspectives on the application of biomaterials in clinical practice. The book will provide clinicians with an essential review of currently available solutions in specific medical areas, also incorporating non-medical solutions and standpoints, thus offering them a broader selection of materials and implantable solutions. This work is the result of joint efforts of various academic and research institutions participating in WIMB Tempus project, 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES, "Development of Sustainable Interrelations between Education, Research and Innovation at WBC Universities in Nanotechnologies and Advanced Materials where Innovation Means Business", co-funded by the Tempus Programme of the European Union.


Algae-Based Biomaterials for Sustainable Development

Algae-Based Biomaterials for Sustainable Development

Author: Huu Hao Ngo

Publisher: Elsevier

Published: 2022-05-20

Total Pages: 342

ISBN-13: 0323961436

DOWNLOAD EBOOK

Biomass, Biofuels, and Biochemicals: Algae-Based Biomaterials for Sustainable Development, Biomedical, Environmental Remediation and Sustainability Assessment, a new release in the Biomass, Biofuels, and Biochemicals series, covers algae-based biomaterials—the green and renewable material that can be produced from various micro- and macro-algae species and utilized for several applications, including biomedical healthcare and environmental remediation. The book provides assessments of the current development of algae-based biomaterials, delivering information on diverse feedstocks and technologies for biomaterial production with a perspective surrounding sustainable development. In addition, circular bioeconomy aspects are included, giving researchers a comprehensive, sustainable development view. This valuable addition to the series delivers a much-needed reference for today’s applications in biomedical and environmental remediation. Comprises the advanced production of algae-based biomaterials from various micro- and macro-algae feedstocks Describes up-to-date applications of algae-based biomaterials for environmental remediation, including pollutants and greenhouse gases Helps explain the sustainable development of algae-based biomaterials, looking at sustainable assessments and circular bioeconomy aspects


Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates

Novel Advances and Approaches in Biomedical Materials Based on Calcium Phosphates

Author: Michael R. Mucalo

Publisher: MDPI

Published: 2020-12-15

Total Pages: 176

ISBN-13: 3039282646

DOWNLOAD EBOOK

Research into the use of calcium phosphates in the development and clinical application of biomedical materials has been a significantly diverse activity conducted by a wide range of scientists, engineers, and medical practitioners, among others. The field of research in this area can, hence, be truly defined as interdisciplinary, and much interesting work leading to imaginative and innovative solutions for the improvement of health outcomes continues to be generated. It has been the intention of this Special Issue to summarise a number of current topical research advances in this area, as well as to review the important area of calcium phosphate-based biomaterials, namely, composites of hydroxyapatite with carbon-based materials. The scientific papers contained in this Special Issue report on advances in the areas of dental-based materials science, bone cements, use of biomaterials created from natural sources, influences of added agents such as adipose stem cells and statins on bioactivity as well as surface influences on electrical potential of biomaterials and uses of glow discharge methods to remove impurities from biomaterial surfaces.


Handbook of Research on Bioenergy and Biomaterials

Handbook of Research on Bioenergy and Biomaterials

Author: Leopoldo Javier Ríos González

Publisher: CRC Press

Published: 2021-12-23

Total Pages: 736

ISBN-13: 1000210731

DOWNLOAD EBOOK

The handbook provides an understanding of consolidated processing and biorefinery systems for the production of bio-based chemicals and value-added bioproducts from renewable sources. The chapters look at a variety of bioenergy technological advances and improvements in the energy and materials sectors that aim to lower our dependence of fossil fuels and consequently reduce greenhouse gas (GHG) emissions. The volume looks at a selection of processes for the production of energy and biomaterials, including the Fischer–Tropsch process, gasification, pyrolysis, combustion, fermentation from renewable sources (such as, plants, animals and their byproducts), and others. Applications that are explored include transportation fuels, biodiesel production, wastewater treatment, edible packaging, bioplastics, physical rehabilitation, tissue engineering, biomedical applications, thermal insulation, industrial value compounds, and more. All of the topics covered in this publication address consolidated processes that play a pivotal role in the production of bioenergy and biomaterials because these processes require fewer unitary operations needed in the process, leading to a more direct method of production. This type of production system contributes to decreasing negative effects on the environment, lowering costs, saving energy and time, and improving profitability and efficiency. This volume will be valuable for the industrial sector, for researchers and scientists, as well as for faculty and advanced students.