Advances in Structural Engineering—Optimization

Advances in Structural Engineering—Optimization

Author: Sinan Melih Nigdeli

Publisher: Springer Nature

Published: 2020-12-04

Total Pages: 310

ISBN-13: 303061848X

DOWNLOAD EBOOK

This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.


Structural Optimization

Structural Optimization

Author: Uri Kirsch

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 311

ISBN-13: 3642848451

DOWNLOAD EBOOK

This book was developed while teaching a graduate course at several universities in the United States. Europe and Israel. during the last two decades. The purpose of the book is to introduce the fundamentals and applications of optimum structural design. Much work has been done in this area recently and many studies have been published. The book is an attempt to collect together selected topics of this literature and to present them in a unified approach. It meets the need for an introductory text covering the basic concepts of modem structural optimization. A previous book by the author on this subject ("Optimum Structural Design". published by McGraw-Hill New York in 1981 and by Maruzen Tokyo in 1983). has been used extensively as a text in many universities throughout the world. The present book reflects the rapid progress and recent developments in this area. A major difficulty in studying structural optimization is that integration of concepts used in several areas. such as structural analysis. numerical optimization and engineering design. is necessary in order to solve a specific problem. To facilitate the study of these topics. the book discusses in detail alternative problem formulations. the fundamentals of different optimization methods and various considerations related to structural design. The advantages and the limitations of the presented approaches are illustrated by numerous examples.


Structural Optimization

Structural Optimization

Author: Franklin Y. Cheng

Publisher: CRC Press

Published: 2017-12-21

Total Pages: 708

ISBN-13: 1482265966

DOWNLOAD EBOOK

Today’s biggest structural engineering challenge is to design better structures, and a key issue is the need to take an integrated approach which balances control of costs with the requirement for handling earthquakes and other dynamic forces. Structural optimization is based on rigorous mathematical formulation and requires computation algorithms for sizing structural elements and synthesizing systems. Now that the right software and enough computing power are readily available, professionals can now develop a suite of alternative designs and a select suitable one. A thoroughly-written and practical book on structural optimization is long overdue. This solid book comprehensively presents current optimization strategies, illustrated with sufficient examples of the design of elements and systems and presenting descriptions of the process and results. Emphasis is given to dynamic loading, in particular to seismic forces. Researchers and practising engineers will find this book an excellent reference, and advanced undergraduates or graduate students can use it as a resource for structural optimization design.


Advances in Structural Optimization

Advances in Structural Optimization

Author: J. Herskovits

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 508

ISBN-13: 9401104530

DOWNLOAD EBOOK

Advances in Structural Optimization presents the techniques for a wide set of applications, ranging from the problems of size and shape optimization (historically the first to be studied) to topology and material optimization. Structural models are considered that use both discrete and finite elements. Structural materials can be classical or new. Emerging methods are also addressed, such as automatic differentiation, intelligent structures optimization, integration of structural optimization in concurrent engineering environments, and multidisciplinary optimization. For researchers and designers in industries such as aerospace, automotive, mechanical, civil, nuclear, naval and offshore. A reference book for advanced undergraduate or graduate courses on structural optimization and optimum design.


Advanced Structural Materials

Advanced Structural Materials

Author: Winston O. Soboyejo

Publisher: CRC Press

Published: 2006-12-21

Total Pages: 526

ISBN-13: 1420017462

DOWNLOAD EBOOK

A snapshot of the central ideas used to control fracture properties of engineered structural metallic materials, Advanced Structural Materials: Properties, Design Optimization, and Applications illustrates the critical role that advanced structural metallic materials play in aerospace, biomedical, automotive, sporting goods, and other indust


Elements of Structural Optimization

Elements of Structural Optimization

Author: Raphael T. Haftka

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 402

ISBN-13: 9401578621

DOWNLOAD EBOOK

The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance between the enormous amount of literature on the subject, and the paucity of applications to practical design problems. This imbalance is being gradually redressed now. There is still no shortage of new publications, but there are also exciting applications of the methods of structural optimizations in the automotive, aerospace, civil engineering, machine design and other engineering fields. As a result of the growing pace of applications, research into structural optimization methods is increasingly driven by real-life problems. Most engineers who design structures employ complex general-purpose software packages for structural analysis. Often they do not have any access to the source the details of program, and even more frequently they have only scant knowledge of the structural analysis algorithms used in this software packages. Therefore the major challenge faced by researchers in structural optimization is to develop methods that are suitable for use with such software packages. Another major challenge is the high computational cost associated with the analysis of many complex real-life problems. In many cases the engineer who has the task of designing a structure cannot afford to analyze it more than a handful of times.


Topology Optimization in Engineering Structure Design

Topology Optimization in Engineering Structure Design

Author: Jihong Zhu

Publisher: Elsevier

Published: 2016-11-08

Total Pages: 296

ISBN-13: 0081021194

DOWNLOAD EBOOK

Topology Optimization in Engineering Structure Design explores the recent advances and applications of topology optimization in engineering structures design, with a particular focus on aircraft and aerospace structural systems.To meet the increasingly complex engineering challenges provided by rapid developments in these industries, structural optimization techniques have developed in conjunction with them over the past two decades. The latest methods and theories to improve mechanical performances and save structural weight under static, dynamic and thermal loads are summarized and explained in detail here, in addition to potential applications of topology optimization techniques such as shape preserving design, smart structure design and additive manufacturing.These new design strategies are illustrated by a host of worked examples, which are inspired by real engineering situations, some of which have been applied to practical structure design with significant effects. Written from a forward-looking applied engineering perspective, the authors not only summarize the latest developments in this field of structure design but also provide both theoretical knowledge and a practical guideline. This book should appeal to graduate students, researchers and engineers, in detailing how to use topology optimization methods to improve product design. - Combines practical applications and topology optimization methodologies - Provides problems inspired by real engineering difficulties - Designed to help researchers in universities acquire more engineering requirements


Advances in Structural and Multidisciplinary Optimization

Advances in Structural and Multidisciplinary Optimization

Author: Axel Schumacher

Publisher: Springer

Published: 2017-12-04

Total Pages: 2101

ISBN-13: 3319679880

DOWNLOAD EBOOK

The volume includes papers from the WSCMO conference in Braunschweig 2017 presenting research of all aspects of the optimal design of structures as well as multidisciplinary design optimization where the involved disciplines deal with the analysis of solids, fluids or other field problems. Also presented are practical applications of optimization methods and the corresponding software development in all branches of technology.


Advances and Trends in Optimization with Engineering Applications

Advances and Trends in Optimization with Engineering Applications

Author: Tamas Terlaky

Publisher: SIAM

Published: 2017-04-26

Total Pages: 730

ISBN-13: 1611974674

DOWNLOAD EBOOK

Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.


An Introduction to Structural Optimization

An Introduction to Structural Optimization

Author: Peter W. Christensen

Publisher: Springer Science & Business Media

Published: 2008-10-20

Total Pages: 214

ISBN-13: 1402086652

DOWNLOAD EBOOK

This book has grown out of lectures and courses given at Linköping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying—frequently very many— variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.