This textbook is a comprehensive overview of the development of cell-based biopharmaceuticals. Beginning with the underlying biology of stem cell and cell-based products, it traces the long and complex journey from preclinical concept to initiation of a pivotal clinical trial and the potential business model behind it.The book also takes into consideration the different regulatory landscapes and their continuous evolution in Europe, North America and other parts of the world. The authors describe a path to manufacture a clinical grade therapeutic that passes all necessary quality measures as a robust and marketable product including an outlook on next generation products and innovative strategies.This reference book is a must-have guide for any professional already active in biopharmaceuticals and anyone interested in getting involved in a scientific, medical or business capacity.
This textbook is a comprehensive overview of the emerging field of cell-based biopharmaceuticals starting from the underlying biology of stem cell and cell-based products all the way to the initiation of a pivotal clinical trial and the potential business model behind it. It also takes into consideration the different regulatory landscapes in Europe, North America and other parts of the world and describes a way to manufacture a pharmaceutical-grade therapeutic that passes all necessary quality measures as a robust and marketable product. This is an important guide for any professional in the field of cell-based biopharmaceuticals, needing insights from scientific, medical and business perspectives in one convenient volume.
This book discusses the different regulatory pathways for gene therapy (GT) and cell therapy (CT) medicinal products implemented by national and international bodies throughout the world (e.g. North and South America, Europe, and Asia). Each chapter, authored by experts from various regulatory bodies throughout the international community, walks the reader through the applications of nonclinical research to translational clinical research to licensure for these innovative products. More specifically, each chapter offers insights into fundamental considerations that are essential for developers of CT and GT products, in the areas of product manufacturing, pharmacology and toxicology, and clinical trial design, as well as pertinent "must-know" guidelines and regulations. Regulatory Aspects of Gene Therapy and Cell Therapy Products: A Global Perspective is part of the American Society of Gene and Cell Therapy sub-series of the highly successful Advances in Experimental Medicine and Biology series. It is essential reading for graduate students, clinicians, and researchers interested in gene and cell therapy and the regulation of pharmaceuticals.
Pharmaceutical Biotechnology offers students taking Pharmacy and related Medical and Pharmaceutical courses a comprehensive introduction to the fast-moving area of biopharmaceuticals. With a particular focus on the subject taken from a pharmaceutical perspective, initial chapters offer a broad introduction to protein science and recombinant DNA technology- key areas that underpin the whole subject. Subsequent chapters focus upon the development, production and analysis of these substances. Finally the book moves on to explore the science, biotechnology and medical applications of specific biotech products categories. These include not only protein-based substances but also nucleic acid and cell-based products. introduces essential principles underlining modern biotechnology- recombinant DNA technology and protein science an invaluable introduction to this fast-moving subject aimed specifically at pharmacy and medical students includes specific ‘product category chapters’ focusing on the pharmaceutical, medical and therapeutic properties of numerous biopharmaceutical products. entire chapter devoted to the principles of genetic engineering and how these drugs are developed. includes numerous relevant case studies to enhance student understanding no prior knowledge of protein structure is assumed
Biopharmaceuticals (i.e., biological medicines sourced from genetically-engineered living systems) for treatment of human diseases have become a significant percentage of the pharmaceutical industry. And not just the recombinant DNA-derived proteins and monoclonal antibodies (both from the innovators and biosimilars); but now, an increasing awareness of the importance of gene therapy and genetically engineered cellular medicinal products. These biopharmaceuticals are being developed by many companies whose Chemistry, Manufacturing & Control (CMC) teams have varying degrees of familiarity or experience with the CMC strategy and regulatory compliance requirements for these challenging products. Companies clearly plan out the strategy for their clinical study plans, but frequently, the development of a strategy for CMC is an afterthought. Coupled with the complexity of the biopharmaceutical manufacturing processes and products, and this can be a recipe for disaster. The third edition of this book provides insights and practical guidance for the CMC teams to develop an acceptable cost-effective, risk-based CMC regulatory compliance strategy for all biopharmaceuticals (recombinant proteins, monoclonal antibodies, genetically engineered viruses and genetically engineered human cells) from early clinical stage development through market approval. The third edition of this book provides added coverage for the biosimilars, antibody drug conjugates (ADCs), bispecific antibodies, genetically engineered viruses, and genetically engineered cells. This third edition of the book also addresses the heightened pressure on CMC regulatory compliance timelines due to the introduction of expedited clinical pathways moving the clinical development closer to a seamless phase process (e.g., FDA Breakthrough Therapy designation, CBER Regenerative Medicine Advanced Therapy (RMAT) designation, EMA Priority Medicines (PRIME) designation). The Challenge of CMC Regulatory Compliance for Biopharmaceuticals is essential, practical information for all pharmaceutical development scientists, Manufacturing and Quality Unit staff, Regulatory Affairs personnel, and senior management involved in the manufacture of biopharmaceuticals.
Stem cell science, encompassing basic biology to practical application, is both vast and diverse. A full appreciation of it requires an understanding of cell and molecular biology, tissue structure and physiology, the practicalities of tissue engineering and bioprocessing, and the pathways to clinical implementation—including the ethical and regulatory imperatives that our society requires us to address. Expectation and debate have been driven by the allure of regenerative medicine using stem cells as a source of replacements for damaged or aged tissues. The potential of stem cell application goes far beyond this. Highly innovative uses of stem cells are emerging as possible therapies for cancers, treating acute damage in conditions such as stroke and myocardial infarction, and resolving a whole range of diseases. Stem Cells: Biology and Application presents the basic concepts underlying the fast-moving science of stem cell biology. This textbook is written for an advanced stem cell biology course. The target audience includes senior undergraduates, first year graduate students, and practitioners in molecular biology, biology, and biomedical engineering. Stem Cells provides a comprehensive understanding of these unique cells, highlighting key areas of research, associated controversies, case studies, technologies, and pioneers in the field.
This book provides a broad account of various applied aspects of microbiology for quality and safety evaluations in food, water, soil, environment and pharmaceutical sciences. The work is timely, as the safety and quality of various commodities such as water and wastewater, food, pharmaceutical medications and medical devices are of paramount concern in developing countries globally for improved public health quality in areas ranging from food security to disease exposure. The book offers an introduction to basic concepts of biosafety and related microbiological practices and applies these methodologies to a multitude of disciplines in subject-focused chapters. Each chapter offers experiments and exercises pertaining to the specific area of interest in microbiological research, which will allow readers to apply the knowledge gained in a laboratory or classroom setting to see the microbiological methods discussed in practice. The book will be useful for industrialists, researchers, academics and undergraduate/graduate students of microbiology, biotechnology, botany and pharmaceutical sciences. The text aims to be a significant contribution in effectively guiding scientists, analysts, lab technicians and quality managers working with microbiology in industrial and commercial fields.
The Business of Healthcare Innovation is the first wide-ranging analysis of business trends in the manufacturing segment of the health care industry. In this leading edge volume, Professor Burns focuses on the key role of the 'producers' as the main source of innovation in health systems. Written by professors of the Wharton School and industry executives, this book provides a detailed overview of the pharmaceutical, biotechnology, genomics/proteomics, medical device and information technology sectors. It analyses the market structures of these sectors as well as the business models and corporate strategies of firms operating within them. Most importantly, the book describes the growing convergence between these sectors and the need for executives in one sector to increasingly draw upon trends in the others. It will be essential reading for students and researchers in the field of health management, and of great interest to strategy scholars, industry practitioners and management consultants.
"The goal is to provide a comprehensive reference book for the preclinicaldiscovery and development scientist whose responsibilities span target identification, lead candidate selection, pharmacokinetics, pharmacology, and toxicology, and for regulatory scientists whose responsibilities include the evaluation of novel therapies." —From the Afterword by Anthony D. Dayan Proper preclinical safety evaluation can improve the predictive value, lessen the time and cost of launching new biopharmaceuticals, and speed potentially lifesaving drugs to market. This guide covers topics ranging from lead candidate selection to establishing proof of concept and toxicity testing to the selection of the first human doses. With chapters contributed by experts in their specific areas, Preclinical Safety Evaluation of Biopharmaceuticals: A Science-Based Approach to Facilitating Clinical Trials: Includes an overview of biopharmaceuticals with information on regulation and methods of production Discusses the principles of ICH S6 and their implementation in the U.S., Europe, and Japan Covers current practices in preclinical development and includes a comparison of safety assessments for small molecules with those for biopharmaceuticals Addresses all aspects of the preclinical evaluation process, including: the selection of relevant species; safety/toxicity endpoints; specific considerations based upon class; and practical considerations in the design, implementation, and analysis of biopharmaceuticals Covers transitioning from preclinical development to clinical trials This is a hands-on, straightforward reference for professionals involved in preclinical drug development, including scientists, toxicologists, project managers, consultants, and regulatory personnel.
Over the past decade, significant efforts have been made to develop stem cell-based therapies for difficult to treat diseases. Multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), appear to hold great promise in regards to a regenerative cell-based therapy for the treatment of these diseases. Currently, more than 200 clinical trials are underway worldwide exploring the use of MSCs for the treatment of a wide range of disorders including bone, cartilage and tendon damage, myocardial infarction, graft-versus-host disease, Crohn’s disease, diabetes, multiple sclerosis, critical limb ischemia and many others. MSCs were first identified by Friendenstein and colleagues as an adherent stromal cell population within the bone marrow with the ability to form clonogenic colonies in vitro. In regards to the basic biology associated with MSCs, there has been tremendous progress towards understanding this cell population’s phenotype and function from a range of tissue sources. Despite enormous progress and an overall increased understanding of MSCs at the molecular and cellular level, several critical questions remain to be answered in regards to the use of these cells in therapeutic applications. Clinically, both autologous and allogenic approaches for the transplantation of MSCs are being explored. Several of the processing steps needed for the clinical application of MSCs, including isolation from various tissues, scalable in vitro expansion, cell banking, dose preparation, quality control parameters, delivery methods and numerous others are being extensively studied. Despite a significant number of ongoing clinical trials, none of the current therapeutic approaches have, at this point, become a standard of care treatment. Although exceptionally promising, the clinical translation of MSC-based therapies is still a work in progress. The extensive number of ongoing clinical trials is expected to provide a clearer path forward for the realization and implementation of MSCs in regenerative medicine. Towards this end, reviews of current clinical trial results and discussions of relevant topics association with the clinical application of MSCs are compiled in this book from some of the leading researchers in this exciting and rapidly advancing field. Although not absolutely all-inclusive, we hope the chapters within this book can promote and enable a better understanding of the translation of MSCs from bench-to-bedside and inspire researchers to further explore this promising and quickly evolving field.