Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Author: Jyeshtharaj Joshi

Publisher: Woodhead Publishing

Published: 2019-06-11

Total Pages: 888

ISBN-13: 0081023375

DOWNLOAD EBOOK

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants.


Adaptive High-order Methods in Computational Fluid Dynamics

Adaptive High-order Methods in Computational Fluid Dynamics

Author: Z. J. Wang

Publisher: World Scientific

Published: 2011

Total Pages: 471

ISBN-13: 9814313181

DOWNLOAD EBOOK

This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.


Incompressible Computational Fluid Dynamics

Incompressible Computational Fluid Dynamics

Author: Max D. Gunzburger

Publisher: Cambridge University Press

Published: 2009-01-11

Total Pages: 0

ISBN-13: 9780521096225

DOWNLOAD EBOOK

Incompressible computational fluid dynamics is an emerging and important discipline, with numerous applications in industry and science. Its methods employ rigourous mathematical analysis far beyond what is presently possible for compressible flows. Vortex methods, finite elements, and spectral methods are emphasised. Contributions from leading experts in the various sub-fields portray the wide-ranging nature of the subject. The book provides an entrée into the current research in the field. It can also serve as a source book for researchers and others who require information on methods and techniques.


Advancement of Shock Capturing Computational Fluid Dynamics Methods

Advancement of Shock Capturing Computational Fluid Dynamics Methods

Author: Keiichi Kitamura

Publisher: Springer Nature

Published: 2020-10-31

Total Pages: 136

ISBN-13: 9811590117

DOWNLOAD EBOOK

This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.


100 Volumes of 'Notes on Numerical Fluid Mechanics'

100 Volumes of 'Notes on Numerical Fluid Mechanics'

Author: Ernst Heinrich Hirschel

Publisher: Springer Science & Business Media

Published: 2009-05-19

Total Pages: 507

ISBN-13: 3540708057

DOWNLOAD EBOOK

In a book that will be required reading for engineers, physicists, and computer scientists, the editors have collated a number of articles on fluid mechanics, written by some of the world’s leading researchers and practitioners in this important subject area.


Parallel Computational Fluid Dynamics 2003

Parallel Computational Fluid Dynamics 2003

Author: Boris Chetverushkin

Publisher: Elsevier

Published: 2004-05-06

Total Pages: 558

ISBN-13: 0080473679

DOWNLOAD EBOOK

The book is devoted to using of parallel multiprocessor computer systems for numerical simulation of the problems which can be described by the equations of continuum mechanics. Parallel algorithms and software, the problems of meta-computing are discussed in details, some results of high performance simulation of modern gas dynamic problems, combustion phenomena, plasma physics etc are presented.·Parallel Algorithms for Multidisciplinary Studies


Advanced Computational Fluid and Aerodynamics

Advanced Computational Fluid and Aerodynamics

Author: Paul G. Tucker

Publisher: Cambridge University Press

Published: 2016-03-15

Total Pages: 589

ISBN-13: 1107075904

DOWNLOAD EBOOK

This book outlines the computational fluid dynamics evolution and gives an overview of the methods available to the engineer.


Advances in Fluid Dynamics

Advances in Fluid Dynamics

Author: W.F., Jr. Ballhaus

Publisher: Springer

Published: 2012-02-25

Total Pages: 315

ISBN-13: 9781461236856

DOWNLOAD EBOOK

This special volume contains the proceedings of the Symposium held on June 26, 1988 at Williamsburg, Virginia, in honor of Professor Maurice Holt on the occasion of his seventieth birthday. There were more than two dozen participants from eleven countries. They were either his past students or his colleagues whose careers crossed his at some point. The twenty-one papers in this volume are the written version of the presentations at this Symposium; they are mostly in the area of computational fluid dynamics (CFD), a field in which Professor Holt is a pioneer. These papers cover almost all aspects of CFD including numerical analysis, symbolic analysis, and grid genera tion. They cover diverse topics such as complex plume flows, shock waves and shock focussing, coronary circulation, free surface flows, direct containment heat ing in nuclear reactors, and uranium enrichment. There is also an article on the progress and future directions in CFD by one of the true experts in this area. In addition to CFD papers, there is an experimental paper on the flow of spherical glass beads in airflow in a 90° vertical-to-horizontal bend, as well as a historical paper on seventy years of fluid dynamic research at Aerodynamisches Institut at Aachen. It is worth pointing out that there is also an article on the simple fluid concept by a world-renowned authority on continuum mechanics.


The Finite Volume Method in Computational Fluid Dynamics

The Finite Volume Method in Computational Fluid Dynamics

Author: F. Moukalled

Publisher: Springer

Published: 2015-08-13

Total Pages: 799

ISBN-13: 3319168746

DOWNLOAD EBOOK

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.


Numerical Models in Fluid-structure Interaction

Numerical Models in Fluid-structure Interaction

Author: Subrata Kumar Chakrabarti

Publisher: Witpress

Published: 2005

Total Pages: 0

ISBN-13: 9781853128370

DOWNLOAD EBOOK

&Quot;This book covers a wide range of numerical computation techniques within the specialized area of fluid mechanics. Numerical computation methods on the effects of fluid on structures are described, with particular emphasis on the offshore application.". "The book emphasizes the latest international research in the area for the advancement of the interaction problem and new applications of the development to the real world problems. The basic mathematical formulations of fluid structure interaction and their numerical modeling are discussed with reference to the physical modeling of the interaction problems."--BOOK JACKET.