This volume LNCS 12557 constitutes the refereed proceedings of the 17th International Symposium on Neural Networks, ISNN 2020, held in Cairo, Egypt, in December 2020. The 24 papers presented in the two volumes were carefully reviewed and selected from 39 submissions. The papers were organized in topical sections named: optimization algorithms; neurodynamics, complex systems, and chaos; supervised/unsupervised/reinforcement learning/deep learning; models, methods and algorithms; and signal, image and video processing.
This book and its companion volumes, LNCS vols. 5551, 5552 and 5553, constitute the proceedings of the 6th International Symposium on Neural Networks (ISNN 2009), held during May 26–29, 2009 in Wuhan, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural n- works and related fields, with a successful sequence of ISNN symposia held in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), and Beijing (2008). Following the tradition of the ISNN series, ISNN 2009 provided a high-level inter- tional forum for scientists, engineers, and educators to present state-of-the-art research in neural networks and related fields, and also to discuss with international colleagues on the major opportunities and challenges for future neural network research. Over the past decades, the neural network community has witnessed tremendous - forts and developments in all aspects of neural network research, including theoretical foundations, architectures and network organizations, modeling and simulation, - pirical study, as well as a wide range of applications across different domains. The recent developments of science and technology, including neuroscience, computer science, cognitive science, nano-technologies and engineering design, among others, have provided significant new understandings and technological solutions to move the neural network research toward the development of complex, large-scale, and n- worked brain-like intelligent systems. This long-term goal can only be achieved with the continuous efforts of the community to seriously investigate different issues of the neural networks and related fields.
This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.
Plant diseases and pests cause significant losses to farmers and threaten food security worldwide. Monitoring the growing conditions of crops and detecting plant diseases is critical for sustainable agriculture. Traditionally, crop inspection has been carried out by people with expert knowledge in the field. However, regarding any activity carried out by humans, this activity is prone to errors, leading to possible incorrect decisions. Innovation is, therefore, an essential fact of modern agriculture. In this context, deep learning has played a key role in solving complicated applications with increasing accuracy over time, and recent interest in this type of technology has prompted its potential application to address complex problems in agriculture, such as plant disease and pest recognition. Although substantial progress has been made in the area, several challenges still remain, especially those that limit systems to operate in real-world scenarios.
This book constitutes the refereed proceedings of the 15th International Symposium on Neural Networks, ISNN 2018, held in Minsk, Belarus in June 2018.The 98 revised regular papers presented in this volume were carefully reviewed and selected from 214 submissions. The papers cover many topics of neural network-related research including intelligent control, neurodynamic analysis, bio-signal, bioinformatics and biomedical engineering, clustering, classification, forecasting, models, algorithms, cognitive computation, machine learning, and optimization.
This book constitutes the refereed proceedings of the 13th International Symposium on Neural Networks, ISNN 2016, held in St. Petersburg, Russia in July 2016. The 84 revised full papers presented in this volume were carefully reviewed and selected from 104 submissions. The papers cover many topics of neural network-related research including signal and image processing; dynamical behaviors of recurrent neural networks; intelligent control; clustering, classification, modeling, and forecasting; evolutionary computation; and cognition computation and spiking neural networks.
The two-volume set LNCS 7367 and 7368 constitutes the refereed proceedings of the 9th International Symposium on Neural Networks, ISNN 2012, held in Shenyang, China, in July 2012. The 147 revised full papers presented were carefully reviewed and selected from numerous submissions. The contributions are structured in topical sections on mathematical modeling; neurodynamics; cognitive neuroscience; learning algorithms; optimization; pattern recognition; vision; image processing; information processing; neurocontrol; and novel applications.
(Bayreuth University, Germany), Jennie Si (Arizona State University, USA), and Hang Li (MicrosoftResearchAsia, China). Besides the regularsessions andpanels, ISNN 2008 also featured four special sessions focusing on some emerging topics.
This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.