This volume deals with main results of the 3rd International Conference on Multivariate Approximation, organized by the University of Dortmund. Special emphasis is put on the following topics: Interpolation and approximation on spheres and balls, approximation by solutions of differential equations, construction of node systems, scattered data techniques.
This volume consists of 24 refereed carefully edited papers on various topics in multivariate approximation. It represents the proceedings of a workshop organized by the University of Firenze, and held in September 1995 in Montecatini, Italy.The main themes of the volume are multiresolution analysis and wavelets, multidimensional interpolation and smoothing, and computer-aided geometric design. A number of particular topics are included, like subdivision algorithms, constrained approximation and shape-preserving algorithms, thin plate splines, radial basis functions, treatment of scattered data, rational surfaces and offsets, blossoming, grid generation, surface reconstruction, algebraic curves and surfaces, and neural networks.
Nineteen contributions cover recent topics in constructive approximation on varieties, approximation by solutions of partial differential equations, application of Riesz bases and frames, multiwavelets and subdivision. An essential resource for researchers and graduates in applied mathematics, computer science and geophysics who are interested in the state-of-the-art developments in multivariate approximation.
This volume contains a selection of eighteen peer-reviewed articles that were presented at the 5th International Conference on Multivariate Approximation, held in Witten-Bommerholz in September 2002. The contributions cover recent developments of constructive approximation on manifolds, approximation by splines and kernels, subdivision techniques and wavelet methods. The main topics are: - applications of multivariate approximation in finance - approximation and stable reconstruction of images, data reduction - multivariate splines for Lagrange interpolation and quasi-interpolation - radial basis functions - spherical point sets - refinable function vectors and non-stationary subdivision - applications of adaptive wavelet methods - blending functions and cubature formulae - singularities of harmonic functions The book provides an overview of state-of-the-art developments in a highly relevant field of applied mathematics, with many links to computer science and geophysics.
The book presents important tools and techniques for treating problems in m- ern multivariate statistics in a systematic way. The ambition is to indicate new directions as well as to present the classical part of multivariate statistical analysis in this framework. The book has been written for graduate students and statis- cians who are not afraid of matrix formalism. The goal is to provide them with a powerful toolkit for their research and to give necessary background and deeper knowledge for further studies in di?erent areas of multivariate statistics. It can also be useful for researchers in applied mathematics and for people working on data analysis and data mining who can ?nd useful methods and ideas for solving their problems. Ithasbeendesignedasatextbookforatwosemestergraduatecourseonmultiva- ate statistics. Such a course has been held at the Swedish Agricultural University in 2001/02. On the other hand, it can be used as material for series of shorter courses. In fact, Chapters 1 and 2 have been used for a graduate course ”Matrices in Statistics” at University of Tartu for the last few years, and Chapters 2 and 3 formed the material for the graduate course ”Multivariate Asymptotic Statistics” in spring 2002. An advanced course ”Multivariate Linear Models” may be based on Chapter 4. A lot of literature is available on multivariate statistical analysis written for di?- ent purposes and for people with di?erent interests, background and knowledge.
This book presents an in-depth study on advances in constructive approximation theory with recent problems on linear positive operators. State-of-the-art research in constructive approximation is treated with extensions to approximation results on linear positive operators in a post quantum and bivariate setting. Methods, techniques, and problems in approximation theory are demonstrated with applications to optimization, physics, and biology. Graduate students, research scientists and engineers working in mathematics, physics, and industry will broaden their understanding of operators essential to pure and applied mathematics. Topics discussed include: discrete operators, quantitative estimates, post-quantum calculus, integral operators, univariate Gruss-type inequalities for positive linear operators, bivariate operators of discrete and integral type, convergence of GBS operators.
Many practical applications require the reconstruction of a multivariate function from discrete, unstructured data. This book gives a self-contained, complete introduction into this subject. It concentrates on truly meshless methods such as radial basis functions, moving least squares, and partitions of unity. The book starts with an overview on typical applications of scattered data approximation, coming from surface reconstruction, fluid-structure interaction, and the numerical solution of partial differential equations. It then leads the reader from basic properties to the current state of research, addressing all important issues, such as existence, uniqueness, approximation properties, numerical stability, and efficient implementation. Each chapter ends with a section giving information on the historical background and hints for further reading. Complete proofs are included, making this perfectly suited for graduate courses on multivariate approximation and it can be used to support courses in computer-aided geometric design, and meshless methods for partial differential equations.
This book provides a systematic survey of classical and recent results on hyperbolic cross approximation. Motivated by numerous applications, the last two decades have seen great success in studying multivariate approximation. Multivariate problems have proven to be considerably more difficult than their univariate counterparts, and recent findings have established that multivariate mixed smoothness classes play a fundamental role in high-dimensional approximation. The book presents essential findings on and discussions of linear and nonlinear approximations of the mixed smoothness classes. Many of the important open problems explored here will provide both students and professionals with inspirations for further research.
This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.