Stringent demands on modern guided weapon systems require new approaches to guidance, control, and estimation. There are requirements for pinpoint accuracy, low cost per round, easy upgrade paths, enhanced performance in counter-measure environments, and the ability to track low-observable targets. Advances in Missile Guidance, Control, and Estimat
The continuing evolving capability of guided weapons demands ever more knowledge of their development. This modern and comprehensive book covers the control aspect of guidance of missiles, torpedoes, robots, and even animal predators, from the viewpoint of the pursuer. The text studies trajectories, zones of interception, the required manoeuvre effort, time of flight, launch envelopes, and stability of the guidance process. Mathematics at first-year university level is the only prerequisite. Acquaintance with feedback control theory would be helpful to the reader. - Covers the control aspect of guidance of missiles, torpedoes, robots, and even animal predators, from the viewpoint of the pursuer - Studies trajectories, zones of interception, the required manoeuvre effort, time of flight, launch envelopes, and stability of the guidance process
Airborne Vehicle Guidance and Control Systems is a broad and wide- angled engineering and technological area for research, and continues to be important not only in military defense systems but also in industrial process control and in commercial transportation networks such as various Global Positioning Systems (GPS). The book fills a long-standing gap in the literature. The author is retired from the Air Force Institute and received the Air Force's Outstanding Civilian Career Service Award.
Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.
The two first CEAS (Council of European Aerospace Societies) Specialist Conferences on Guidance, Navigation and Control (CEAS EuroGNC) were held in Munich, Germany in 2011 and in Delft, The Netherlands in 2013. ONERA The French Aerospace Lab, ISAE (Institut Supérieur de l’Aéronautique et de l’Espace) and ENAC (Ecole Nationale de l’Aviation Civile) accepted the challenge of jointly organizing the 3rd edition. The conference aims at promoting new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems. It represents a unique forum for communication and information exchange between specialists in the fields of GNC systems design and operation, including air traffic management. This book contains the forty best papers and gives an interesting snapshot of the latest advances over the following topics: l Control theory, analysis, and design l Novel navigation, estimation, and tracking methods l Aircraft, spacecraft, missile and UAV guidance, navigation, and control l Flight testing and experimental results l Intelligent control in aerospace applications l Aerospace robotics and unmanned/autonomous systems l Sensor systems for guidance, navigation and control l Guidance, navigation, and control concepts in air traffic control systems For the 3rd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with standard journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.
Missile Guidance, Second Edition provides a timely survey of missile control and guidance theory, based on extensive work the author has done using the Lyapunov approach. This new edition also presents the Lyapunov-Bellman approach for choosing optimal parameters of the guidance laws, and direct and inverse optimal problems are considered. This material is important for readers working in the areas of optimization and optimal theory. This edition also contains updated coverage of guidance and control system components, since the efficiency of guidance laws depends on their realization. The text concludes with information on the new generation of intercept systems now in development.
Design of Guidance and Control Systems for Tactical Missiles presents a modern, comprehensive study of the latest design methods for tactical missile guidance and control. It analyzes autopilot designs, seeker system designs, guidance laws and theories, and the internal and external disturbances affecting the performance factors of missile guidance control systems. The text combines detailed examination of key theories with practical coverage of methods for advanced missile guidance control systems. It is valuable content for professors and graduate-level students in missile guidance and control, as well as engineers and researchers who work in the area of tactical missile guidance and control.
Air and Missile Defense Systems Engineering fills a need for those seeking insight into the design procedures of the air and missile defense system engineering process. Specifically aimed at policy planners, engineers, researchers, and consultants, it presents a balanced approach to negating a target in both natural and electronic attack environmen
Over the last few decades, both the aeronautics and space disciplines have greatly influenced advances in controls, sensors, data fusion and navigation. Many of those achievements that made the word “aerospace” synonymous with “high–tech” were enabled by innovations in guidance, navigation and control. Europe has seen a strong trans-national consolidation process in aerospace over the last few decades. Most of the visible products, like commercial aircraft, fighters, helicopters, satellites, launchers or missiles, are not made by a single country – they are the fruits of cooperation. No European country by itself hosts a specialized guidance, navigation and controls community large enough to cover the whole spectrum of disciplines. However, on a European scale, mutual exchange of ideas, concepts and solutions is enriching for all. The 1st CEAS Specialist Conference on Guidance, Navigation and Control is an attempt to bring this community together. This book is a selection of papers presented at the conference. All submitted papers have gone through a formal review process in compliance with good journal practices. The best papers have been recommended by the reviewers to be published in this book.