This book provides details and collective information on working principle, process mechanism, salient features, and unique applications of various advanced manufacturing techniques and processes belong. The book is divided in three sessions covering modern machining methods, advanced repair and joining techniques and, finally, sustainable manufacturing. The latest trends and research aspects of those fields are highlighted.
Modern Design Theory and Methodology, MEMS & Nanotechnology, Material Science & Technology in Manufacturing Advanced Manufacturing Technology, Equipment and Manufacturing Systems & Automation Proceedings: Selected, peer reviewed papers from the 13th International Manufacturing Conference in China, September 21-23, 2009, Dalian, China
MEMs Materials and Processes Handbook" is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on "Materials" and "Processes". The extensive Material Selection Guide" and a "Material Database" guides the reader through the selection of appropriate materials for the required task at hand. The "Processes" section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs.
Microsystems and MEMS technology is one of the biggest breakthroughs in the area of mechanical and electronic technology in recent years. This is the technology of extremely small and powerful devices, and systems built around them, which have mechanical and electrical components. MEMS technology is expanding rapidly, with major application areas being telecommunications, biomedical technology, manufacturing and robotic systems, transportation and aerospace. Academics are desperate for texts to familiarise future engineers with this broad-ranging technology. This text provides an engineering design approach to MEMS and microsystems which is appropriate for professionals and senior level students. This design approach is conveyed through good examples, cases and applied problems. The book is appropriate for mechanical and aerospace engineers, since it carefully explains the electrical/electronic aspects of the subject. Electrical engineering students will be given strong coverage of the mechanical side of MEMS, something they may not receive elsewhere.
The manufacturing industry will reap significant benefits from encouraging the development of digital manufacturing science and technology. Digital Manufacturing Science uses theorems, illustrations and tables to introduce the definition, theory architecture, main content, and key technologies of digital manufacturing science. Readers will be able to develop an in-depth understanding of the emergence and the development, the theoretical background, and the techniques and methods of digital manufacturing science. Furthermore, they will also be able to use the basic theories and key technologies described in Digital Manufacturing Science to solve practical engineering problems in modern manufacturing processes. Digital Manufacturing Science is aimed at advanced undergraduate and postgraduate students, academic researchers and researchers in the manufacturing industry. It allows readers to integrate the theories and technologies described with their own research works, and to propose new ideas and new methods to improve the theory and application of digital manufacturing science.
Furniture Design is a comprehensive guide and resource for students and furniture designers. As well as discussing pioneering contemporary and historical designs, it also provides substantive answers to designers’ questions about function, materials, manufacture and sustainability, integrating guidance on all of these subjects – particularly material and manufacturing properties, in one accessible and structured volume. Many leading contemporary furniture designers from around the world are included, with case studies carefully selected to highlight the importance of both material and manufacture-led design processes. The book is also intended to provide an insight into furniture design for those considering a university education in product and industrial design.
energy production, environmental management, transportation, communication, computation, and education. As the twenty-first century unfolds, nanotechnology's impact on the health, wealth, and security of the world's people is expected to be at least as significant as the combined influences in this century of antibiotics, the integrated circuit, and human-made polymers. Dr. Neal Lane, Advisor to the President for Science and Technology and former National Science Foundation (NSF) director, stated at a Congressional hearing in April 1998, "If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering. " Recognizing this potential, the White House Office of Science and Technology Policy (OSTP) and the Office of Management and Budget (OMB) have issued a joint memorandum to Federal agency heads that identifies nanotechnology as a research priority area for Federal investment in fiscal year 2001. This report charts "Nanotechnology Research Directions," as developed by the Interagency W orking Group on Nano Science, Engineering, and Technology (IWGN) of the National Science and Technology Council (NSTC). The report incorporates the views of leading experts from government, academia, and the private sector. It reflects the consensus reached at an IWGN-sponsored workshop held on January 27-29, 1999, and detailed in contributions submitted thereafter by members of the V. S. science and engineering community. (See Appendix A for a list of contributors.
This project-oriented facilities design and material handling reference explores the techniques and procedures for developing an efficient facility layout, and introduces some of the state-of-the-art tools involved, such as computer simulation. A "how-to," systematic, and methodical approach leads readers through the collection, analysis and development of information to produce a quality functional plant layout. Lean manufacturing; work cells and group technology; time standards; the concepts behind calculating machine and personnel requirements, balancing assembly lines, and leveling workloads in manufacturing cells; automatic identification and data collection; and ergonomics. For facilities planners, plant layout, and industrial engineer professionals who are involved in facilities planning and design.