Advances in Low-Temperature Biology
Author: P.L. Steponkus
Publisher: Elsevier
Published: 1996-12-17
Total Pages: 336
ISBN-13: 0080552285
DOWNLOAD EBOOKAdvances in Low-Temperature Biology
Read and Download eBook Full
Author: P.L. Steponkus
Publisher: Elsevier
Published: 1996-12-17
Total Pages: 336
ISBN-13: 0080552285
DOWNLOAD EBOOKAdvances in Low-Temperature Biology
Author: Peter L. Steponkus
Publisher:
Published: 1992
Total Pages:
ISBN-13:
DOWNLOAD EBOOKAuthor: David L. Denlinger
Publisher: Cambridge University Press
Published: 2010-01-28
Total Pages:
ISBN-13: 1139485474
DOWNLOAD EBOOKLow temperature is a major environmental constraint impacting the geographic distribution and seasonal activity patterns of insects. Written for academic researchers in environmental physiology and entomology, this book explores the physiological and molecular mechanisms that enable insects to cope with a cold environment and places these findings into an evolutionary and ecological context. An introductory chapter provides a primer on insect cold tolerance and subsequent chapters in the first section discuss the organismal, cellular and molecular responses that allow insects to survive in the cold despite their, at best, limited ability to regulate their own body temperature. The second section, highlighting the evolutionary and macrophysiological responses to low temperature, is especially relevant for understanding the impact of global climate change on insect systems. A final section translates the knowledge gained from the rest of the book into practical applications including cryopreservation and the augmentation of pest management strategies.
Author:
Publisher:
Published: 2012
Total Pages: 47
ISBN-13:
DOWNLOAD EBOOKAuthor: J.S. Willis
Publisher: Elsevier
Published: 1997-04-15
Total Pages: 305
ISBN-13: 0080877028
DOWNLOAD EBOOKNotwithstanding widespread studies and even several biological journals devoted to temperature, it is difficult to perceive a field of thermobiology as such. Interest in the effects of temperature of biological systems is fragmented into specific thermal ranges and often connected with particular applications: subzero cryobiology and preservation of cells and tissues or survival of poikilotherms, para-zero cryobiology and preservation of whole organs and survival of whole animals, intermediate ranges and physiological adaption and regulation, high temperatures and use of heat for killing cancer cells, very high temperatures and limits of biological structure. Yet it has not always been so, and there are good reasons why it need not remain so. General and comparative physiologists such as W.J. Crozier, H. Precht, J. Belehradek, F. Johnson, C.L. Prosser, and others have sought throughout this century to lay foundations for unified approaches to temperature in biological systems.Recent findings also serve to suggest principles and processes that span the range of temperatures of biological interest. Microviscosity of membranes is an issue originally of interest to low temperature biologists but with relevance to limiting high temperatures; conversely for protein structure. Certain "heat shock proteins" now appear to be responses to generalized stress, including low temperature.Inevitably, the chapters of this book reflect the "zonal" character of thermobiology: two chapters (by Storey and Raymond) deal with protection against subfreezing temperatures; three (Hazel, membrane structure, Dietrich, microtubular structure, and Kruuv, cell growth) deal with the effects of and modulation to cool-to-moderate superfreezing temperatures, one (Willis) with modulation (of membrane ion transport) to moderate-to-high temperatures and two (Li, heat shock proteins and Lepock, proteins in general) with stressfully high temperatures. Explicit in each of these chapters, however, are principles and issues that transcend the parochialism of the temperature range under consideration.
Author: Paul H. Li
Publisher: Springer Science & Business Media
Published: 2013-11-11
Total Pages: 360
ISBN-13: 1489902775
DOWNLOAD EBOOKThis volume is compiled based on the proceedings of the 5th International Plant Cold Hardiness Seminar, which was held at Oregon State University, Corvallis, Oregon, USA, August 5 to 8, 1996. Participants representing 16 nations and 22 U. S. states attended the seminar. Researchers came from major laboratories around the world involving plant cold hardiness research. The information compiled in this volume represents the state-of the-art research and our understanding of plant cold hardiness in terms of molecular biol ogy, biochemistry, and physiology. The 1996 International Plant Cold Hardiness Seminar was the fifth of the series; it was first held in 1977 at the University of Minnesota, St. Paul, MN, and since then has met every 5 years. The overall goal of this seminar series is to foster the exchange of ideas and research findings among the diverse groups of scientists studying freezing and chilling stresses from a wide variety of perspectives. This is the only international conference focus ing its programs entirely on low temperature stress in plants. In accordance with the tradi tion, the fifth conference focused on freezing and chilling stress of plants and covered various aspects of plant cold hardiness, including molecular genetics, biochemistry, physi ology, and agricultural applications. All contributors to this volume are eminent researchers who have had significant contributions to the knowledge of plant cold hardiness.
Author: Richard Lee
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 516
ISBN-13: 147570190X
DOWNLOAD EBOOKThe study of insects at low temperature is a comparatively new field. Only recently has insect cryobiology begun to mature, as research moves from a descriptive approach to a search for underlying mechanisms at diverse levels of organization ranging from the gene and cell to ecological and evolutionary relationships. Knowledge of insect responses to low temperature is crucial for understanding the biology of insects living in seasonally varying habitats as well as in polar regions. It is not possible to precisely define low temperature. In the tropics exposure to 10-15°C may induce chill coma or death, whereas some insects in temperate and polar regions remain active and indeed even able to fly at O°C or below. In contrast, for persons interested in cryopreservation, low temperature may mean storage in liquid nitrogen at - 196°C. In the last decade, interest in adaptations of invertebrates to low temperature has risen steadily. In part, this book had its origins in a symposium on this subject that was held at the annual meeting of the Entomological Society of America in Louisville, Kentucky, USA in December, 1988. However, the emergence and growth of this area has also been strongly influenced by an informal group of investigators who met in a series of symposia held in Oslo, Norway in 1982, in Victoria, British Columbia, Canada in 1985 and in Cambridge, England in 1988. Another is scheduled for Binghamton, New York, USA (1990).
Author: John G. Baust
Publisher: CRC Press
Published: 2006-08-15
Total Pages: 426
ISBN-13: 1420004220
DOWNLOAD EBOOKMoving rapidly from science fiction to science fact, cryopreservation is an integral part of many research, development, and production processes in industry and academia. The preservation sciences have emerged as an interdisciplinary platform that incorporates the fundamentals of cell and molecular biology, and bioengineering, with the classic met
Author: Joseph D. Bronzino
Publisher: CRC Press
Published: 1999-12-28
Total Pages: 1700
ISBN-13: 9780849304613
DOWNLOAD EBOOKCategory Biomedical Engineering Subcategory Contact Editor: Stern
Author: K. Timmerhaus
Publisher: Springer Science & Business Media
Published: 2013-03-13
Total Pages: 563
ISBN-13: 1475702086
DOWNLOAD EBOOKWith the 1975 Cryogenic Engineering Conference this se ries enters the third decade of presenting the latest advances in the field of cryogenic engineering. The 1975 Cryogenic Engineering Conference also marked the first time the meeting had been held outside the territorial limits of the United States. Based on the enthusiastic response of the attendees and the exemplary hospitality of the Canadian hosts, it certainly will not be the last meeting to convene beyond the confines of the fifty states. The Cryogenic Engineering Conference Board is extremely grateful to The Royal Military College of Canada and Queen's University for the invitation to hold this meeting in Kingston, Ontario, Canada. The assistance of A. C. Leonard and his staff added immeasurably in making this visit to Canada both a pie asant and a memorable one. The 1975 Cryogenic Engineering Conference was the first meeting of this group on the new biennial conference schedule. Since the last conference in 1973, the Western Hemisphere has experienced the impact of various energy shortages. Thus, it was appropriate that the theme "Cryogenics Applied to Natural Resource Management" for this Conference was not only timely but also an opportunity for the scientific community engaged in cryogenic activities to review the role of cryogenics in meeting these new challenges and problems facing the energy-deficient nations of the world. The Cryogenic Engineering Conference was also pleased to have the Interna tional Cryogenic Materials Conference join them in this meeting.