High Temperature Gas-cooled Reactors

High Temperature Gas-cooled Reactors

Author: Tetsuaki Takeda

Publisher: Academic Press

Published: 2021-02-24

Total Pages: 500

ISBN-13: 012821032X

DOWNLOAD EBOOK

High-Temperature Gas Reactors is the fifth volume in the JSME Series on Thermal and Nuclear Power Generation. Series Editor Yasuo Koizumi and his Volume editors Tetsuaki Takeda and Yoshiyuki Inagaki present the latest research on High-Temperature Gas Reactor (HTGR) development and utilization, beginning with an analysis of the history of HTGRs. A detailed analysis of HTGR design features, including reactor core design, cooling tower design, pressure vessel design, I&C factors and safety design, provides readers with a solid understanding of how to develop efficient and safe HTGR within a nuclear power plant.The authors combine their knowledge to present a guide on the safety of HTGRs throughout the entire reactor system, drawing on their unique experience to pass on lessons learned and best practices to support professionals and researchers in their design and operation of these advanced reactor types. Case studies of critical testing carried out by the authors provide the reader with firsthand information on how to conduct tests safely and effectively and an understanding of which responses are required in unexpected incidents to achieve their research objectives. An analysis of technologies and systems in development and testing stages offer the reader a look to the future of HTGRs and help to direct and inform their further research in heat transfer, fluid-dynamics, fuel options and advanced reactor facility selection.This volume is of interest for nuclear and thermal energy engineers and researchers focusing on HTGRs, HTGR plant designers and operators, regulators, post graduate students of nuclear engineering, national labs, government officials and agencies in power and energy policy and regulations. - Written by the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers and draws upon their combined wealth of knowledge and experience - Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits - Considers the societal impact and sustainability concerns and goals throughout the discussion - Includes safety factors and considerations, as well as unique results from performance testing of HTGR systems


Advances in High Temperature Gas Cooled Reactor Fuel Technology

Advances in High Temperature Gas Cooled Reactor Fuel Technology

Author: International Atomic Energy Agency

Publisher:

Published: 2012-06

Total Pages: 639

ISBN-13: 9789201253101

DOWNLOAD EBOOK

This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.


Storage and Hybridization of Nuclear Energy

Storage and Hybridization of Nuclear Energy

Author: Hitesh Bindra

Publisher: Academic Press

Published: 2018-11-22

Total Pages: 302

ISBN-13: 0128139765

DOWNLOAD EBOOK

Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation. - Presents a unique view on the technologies and systems available to integrate renewables and nuclear energy - Provides insights into the different methodologies and technologies currently available for the storage of energy - Includes case studies from well-known experts working on specific integration concepts around the world


Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core

Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core

Author: Shengyao Jiang

Publisher: Springer Nature

Published: 2020-11-19

Total Pages: 510

ISBN-13: 9811595658

DOWNLOAD EBOOK

This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.


Nuclear Hydrogen Production Handbook

Nuclear Hydrogen Production Handbook

Author: Xing L. Yan

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 898

ISBN-13: 1439810842

DOWNLOAD EBOOK

Written by two leading researchers from the world-renowned Japan Atomic Energy Agency, the Nuclear Hydrogen Production Handbook is an unrivalled overview of current and future prospects for the effective production of hydrogen via nuclear energy. Combining information from scholarly analyses, industrial data, references, and other resources, this h


Thermal and Flow Design of Helium-cooled Reactors

Thermal and Flow Design of Helium-cooled Reactors

Author: Gilbert Melese

Publisher:

Published: 1984

Total Pages: 444

ISBN-13:

DOWNLOAD EBOOK

This source book provides both an overview of gas-cooled reactors and a detailed look at the high-temperature gas-cooled reactor (HTGR). Taking a worldwide perspective, this book reviews the early development of the HTGR and explores potential future development and applications.


Material Properties of Unirradiated Uranium-Molybdenum (U-Mo) Fuel for Research Reactors

Material Properties of Unirradiated Uranium-Molybdenum (U-Mo) Fuel for Research Reactors

Author: International Atomic Energy Agency

Publisher:

Published: 2020-10-12

Total Pages: 144

ISBN-13: 9789201157201

DOWNLOAD EBOOK

This publication presents the material properties of all unirradiated Uranium-Molybdenum (U-Mo) fuel constituents that are essential for fuel designers and reactor operators to evaluate the fuel's performance and safety for research reactors. Many significant advances in the understanding and development of low enriched uranium U-Mo fuels have been made since 2004, stimulated by the need to understand irradiation behavior and early fuel failures during testing. The publication presents a comprehensive overview of mechanical and physical property data from U-Mo fuel research


Nuclear Fuel Cycle Simulation System (VISTA)

Nuclear Fuel Cycle Simulation System (VISTA)

Author: International Atomic Energy Agency

Publisher: IAEA

Published: 2007

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK

The Nuclear Fuel Cycle Simulation System (VISTA) is a simulation system which estimates long term nuclear fuel cycle material and service requirements as well as the material arising from the operation of nuclear fuel cycle facilities and nuclear power reactors. It is a scenario based simulation tool which can model several nuclear fuel cycle options including existing nuclear power reactor types and future possible reactor types. The past operations of the power reactors and fuel cycle facilities can be modelled in the system, in order to estimate the current amount of spent fuel stored or total Pu in stored spent fuel. It can also accept future projections for nuclear power and other scenario parameters in order to predict future fuel cycle material requirements.The model has been designed to be an optimum mixture of simplicity, speed and accuracy. It does not require too many input parameters if the purpose is just to compare the requirements for selected scenarios. Furthermore, the accuracy of the system can be improved by introducing more detailed and correct sets of input parameters.