NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2003-01-01

Total Pages: 459

ISBN-13: 8120321863

DOWNLOAD EBOOK

This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.


Genetic Algorithms and Fuzzy Logic Systems

Genetic Algorithms and Fuzzy Logic Systems

Author: Elie Sanchez

Publisher: World Scientific

Published: 1997

Total Pages: 254

ISBN-13: 9789810224233

DOWNLOAD EBOOK

Ever since fuzzy logic was introduced by Lotfi Zadeh in the mid-sixties and genetic algorithms by John Holland in the early seventies, these two fields widely been subjects of academic research the world over. During the last few years, they have been experiencing extremely rapid growth in the industrial world, where they have been shown to be very effective in solving real-world problems. These two substantial fields, together with neurocomputing techniques, are recognized as major parts of soft computing: a set of computing technologies already riding the waves of the next century to produce the human-centered intelligent systems of tomorrow; the collection of papers presented in this book shows the way. The book also contains an extensive bibliography on fuzzy logic and genetic algorithms.


Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Author: Lakhmi C. Jain

Publisher: CRC Press

Published: 2020-01-29

Total Pages: 366

ISBN-13: 1000722945

DOWNLOAD EBOOK

Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.


Theoretical Advances and Applications of Fuzzy Logic and Soft Computing

Theoretical Advances and Applications of Fuzzy Logic and Soft Computing

Author: Oscar Castillo

Publisher: Springer Science & Business Media

Published: 2007-10-10

Total Pages: 626

ISBN-13: 3540724346

DOWNLOAD EBOOK

This book comprises a selection of papers on theoretical advances and applications of fuzzy logic and soft computing from the IFSA 2007 World Congress, held in Cancun, Mexico, June 2007. These papers constitute an important contribution to the theory and applications of fuzzy logic and soft computing methodologies.


Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms

Author: Lakhmi C. Jain

Publisher: CRC Press

Published: 2020-01-29

Total Pages: 363

ISBN-13: 1000715124

DOWNLOAD EBOOK

Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.


Genetic Fuzzy Systems: Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases

Genetic Fuzzy Systems: Evolutionary Tuning And Learning Of Fuzzy Knowledge Bases

Author: Oscar Cordon

Publisher: World Scientific

Published: 2001-07-13

Total Pages: 489

ISBN-13: 9814494453

DOWNLOAD EBOOK

In recent years, a great number of publications have explored the use of genetic algorithms as a tool for designing fuzzy systems. Genetic Fuzzy Systems explores and discusses this symbiosis of evolutionary computation and fuzzy logic. The book summarizes and analyzes the novel field of genetic fuzzy systems, paying special attention to genetic algorithms that adapt and learn the knowledge base of a fuzzy-rule-based system. It introduces the general concepts, foundations and design principles of genetic fuzzy systems and covers the topic of genetic tuning of fuzzy systems. It also introduces the three fundamental approaches to genetic learning processes in fuzzy systems: the Michigan, Pittsburgh and Iterative-learning methods. Finally, it explores hybrid genetic fuzzy systems such as genetic fuzzy clustering or genetic neuro-fuzzy systems and describes a number of applications from different areas.Genetic Fuzzy System represents a comprehensive treatise on the design of the fuzzy-rule-based systems using genetic algorithms, both from a theoretical and a practical perspective. It is a valuable compendium for scientists and engineers concerned with research and applications in the domain of fuzzy systems and genetic algorithms.


NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS

NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS

Author: S. RAJASEKARAN

Publisher: PHI Learning Pvt. Ltd.

Published: 2017-05-01

Total Pages: 574

ISBN-13: 812035334X

DOWNLOAD EBOOK

The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.


Fuzzy Logic And Soft Computing

Fuzzy Logic And Soft Computing

Author: Bernadette Bouchon-meunier

Publisher: World Scientific

Published: 1995-09-15

Total Pages: 509

ISBN-13: 9814500089

DOWNLOAD EBOOK

Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning.This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field.


Type-2 Fuzzy Logic: Theory and Applications

Type-2 Fuzzy Logic: Theory and Applications

Author: Oscar Castillo

Publisher: Springer Science & Business Media

Published: 2008-02-20

Total Pages: 252

ISBN-13: 3540762833

DOWNLOAD EBOOK

This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.


Automatic Generation of Neural Network Architecture Using Evolutionary Computation

Automatic Generation of Neural Network Architecture Using Evolutionary Computation

Author: E. Vonk

Publisher: World Scientific

Published: 1997

Total Pages: 196

ISBN-13: 9789810231064

DOWNLOAD EBOOK

This book describes the application of evolutionary computation in the automatic generation of a neural network architecture. The architecture has a significant influence on the performance of the neural network. It is the usual practice to use trial and error to find a suitable neural network architecture for a given problem. The process of trial and error is not only time-consuming but may not generate an optimal network. The use of evolutionary computation is a step towards automation in neural network architecture generation.An overview of the field of evolutionary computation is presented, together with the biological background from which the field was inspired. The most commonly used approaches to a mathematical foundation of the field of genetic algorithms are given, as well as an overview of the hybridization between evolutionary computation and neural networks. Experiments on the implementation of automatic neural network generation using genetic programming and one using genetic algorithms are described, and the efficacy of genetic algorithms as a learning algorithm for a feedforward neural network is also investigated.