By framing issues, identifying risks, eliciting stakeholder preferences, and suggesting alternative approaches, decision analysts can offer workable solutions in domains such as the environment, health and medicine, engineering and operations research, and public policy. This book reviews and extends the material typically presented in introductory texts. Not a single book covers the broad scope of decision analysis at this advanced level. It will be a valuable resource for academics and students in decision analysis as well as decision analysts and managers
Whether we like it or not we all feel that the world is uncertain. From choosing a new technology to selecting a job, we rarely know in advance what outcome will result from our decisions. Unfortunately, the standard theory of choice under uncertainty developed in the early forties and fifties turns out to be too rigid to take many tricky issues of choice under uncertainty into account. The good news is that we have now moved away from the early descriptively inadequate modeling of behavior. This book brings the reader into contact with the accomplished progress in individual decision making through the most recent contributions to uncertainty modeling and behavioral decision making. It also introduces the reader into the many subtle issues to be resolved for rational choice under uncertainty.
Discover recent powerful advances in the theory, methods, and applications of decision and risk analysis Focusing on modern advances and innovations in the field of decision analysis (DA), Breakthroughs in Decision Science and Risk Analysis presents theories and methods for making, improving, and learning from significant practical decisions. The book explains these new methods and important applications in an accessible and stimulating style for readers from multiple backgrounds, including psychology, economics, statistics, engineering, risk analysis, operations research, and management science. Highlighting topics not conventionally found in DA textbooks, the book illustrates genuine advances in practical decision science, including developments and trends that depart from, or break with, the standard axiomatic DA paradigm in fundamental and useful ways. The book features methods for coping with realistic decision-making challenges such as online adaptive learning algorithms, innovations in robust decision-making, and the use of a variety of models to explain available data and recommend actions. In addition, the book illustrates how these techniques can be applied to dramatically improve risk management decisions. Breakthroughs in Decision Science and Risk Analysis also includes: An emphasis on new approaches rather than only classical and traditional ideas Discussions of how decision and risk analysis can be applied to improve high-stakes policy and management decisions Coverage of the potential value and realism of decision science within applications in financial, health, safety, environmental, business, engineering, and security risk management Innovative methods for deciding what actions to take when decision problems are not completely known or described or when useful probabilities cannot be specified Recent breakthroughs in the psychology and brain science of risky decisions, mathematical foundations and techniques, and integration with learning and pattern recognition methods from computational intelligence Breakthroughs in Decision Science and Risk Analysis is an ideal reference for researchers, consultants, and practitioners in the fields of decision science, operations research, business, management science, engineering, statistics, and mathematics. The book is also an appropriate guide for managers, analysts, and decision and policy makers in the areas of finance, health and safety, environment, business, engineering, and security risk management.
Portfolio Decision Analysis: Improved Methods for Resource Allocation provides an extensive, up-to-date coverage of decision analytic methods which help firms and public organizations allocate resources to 'lumpy' investment opportunities while explicitly recognizing relevant financial and non-financial evaluation criteria and the presence of alternative investment opportunities. In particular, it discusses the evolution of these methods, presents new methodological advances and illustrates their use across several application domains. The book offers a many-faceted treatment of portfolio decision analysis (PDA). Among other things, it (i) synthesizes the state-of-play in PDA, (ii) describes novel methodologies, (iii) fosters the deployment of these methodologies, and (iv) contributes to the strengthening of research on PDA. Portfolio problems are widely regarded as the single most important application context of decision analysis, and, with its extensive and unique coverage of these problems, this book is a much-needed addition to the literature. The book also presents innovative treatments of new methodological approaches and their uses in applications. The intended audience consists of practitioners and researchers who wish to gain a good understanding of portfolio decision analysis and insights into how PDA methods can be leveraged in different application contexts. The book can also be employed in courses at the post-graduate level.
For courses in Decision Making and Engineering. The Fundamentals of Analyzing and Making Decisions Foundations of Decision Analysis is a groundbreaking text that explores the art of decision making, both in life and in professional settings. By exploring themes such as dealing with uncertainty and understanding the distinction between a decision and its outcome, the First Edition teaches readers to achieve clarity of action in any situation. The book treats decision making as an evolutionary process from a scientific standpoint. Strategic decision-making analysis is presented as a tool to help students understand, discuss, and settle on important life choices. Through this text, readers will understand the specific thought process that occurs behind approaching any decision to make easier and better life choices for themselves.
This book is intended for the GIS Science and Decision Science communities. It is primarily targeted at postgraduate students and practitioners in GIS and urban, regional and environmental planning as well as applied decision analysis. It is also suitable for those studying and working with spatial decision support systems. The main objectives of this book are to effectivley integrate Multicriteria Decision Analysis (MCDA) into Geographic Information Science (GIScience), to provide a comprehensive account of theories, methods, technologies and tools for tackling spatial decision problems and to demonstrate how the GIS-MCDA approaches can be used in a wide range of planning and management situations.
The success of any business relies heavily on the evaluation and improvement on current strategies and processes. Such progress can be facilitated by implementing more effective decision-making systems. Tools and Techniques for Economic Decision Analysis provides a thorough overview of decision models and methodologies in the context of business economics. Highlighting a variety of relevant issues on finance, economic policy, and firms and networks, this book is an ideal reference source for managers, professionals, students, and academics interested in emerging developments for decision analysis.
The present book fmds its roots in the International Conference on Methods and Applications of Multiple Criteria Decision Making held in Mons in May 1997. A small number of contributions to that conference were selected via a refereeing procedure and retained authors were requested to include in their final version their more recent results. This explains why some papers differ significantly from the original presentation. The introductory paper of Raynaud addresses the long range forecasts in Multiple Criteria Decision Making on the basis of a Delphi process that was run before and during the congress. In a second part, the French author explains how he and some of his partners could find the proof of an important conjecture : the iteration of a strongly monotonic choice function is not a strongly monotonic ranking function. The second part of the book covers methodological aspects of decision theory. The contribution of Bouyssou and Pirlot concerns the reformulation of classical conjoint measurement models that induce a complete and transitive preference binary relation on the set of alternatives which seem to be unrealistic when decision makers are asked to compare objects evaluated on several attributes. The authors propose to consider non transitive, non complete and non additive decomposable conjoint models. They define properties that characterize such models.
At a practical level, mathematical programming under multiple objectives has emerged as a powerful tool to assist in the process of searching for decisions which best satisfy a multitude of conflicting objectives, and there are a number of distinct methodologies for multicriteria decision-making problems that exist. These methodologies can be categorized in a variety of ways, such as form of model (e.g. linear, non-linear, stochastic), characteristics of the decision space (e.g. finite or infinite), or solution process (e.g. prior specification of preferences or interactive). Scientists from a variety of disciplines (mathematics, economics and psychology) have contributed to the development of the field of Multicriteria Decision Making (MCDM) (or Multicriteria Decision Analysis (MCDA), Multiattribute Decision Making (MADM), Multiobjective Decision Making (MODM), etc.) over the past 30 years, helping to establish MCDM as an important part of management science. MCDM has become a central component of studies in management science, economics and industrial engineering in many universities worldwide. Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory and Applications aims to bring together `state-of-the-art' reviews and the most recent advances by leading experts on the fundamental theories, methodologies and applications of MCDM. This is aimed at graduate students and researchers in mathematics, economics, management and engineering, as well as at practicing management scientists who wish to better understand the principles of this new and fast developing field.
This book presents the main principles of preference disaggregation analysis and covers theoretical advances in preference modelling, group decision making, classification methods, robustness analysis, process mining, and decision support systems. In addition, it highlights several applications of the preference disaggregation analysis in a wide range of areas, such as customer satisfaction analysis, consumer behavior, energy and environmental policy, strategy development, and agricultural marketing. This book was published in honor of Yannis Siskos on the occasion of his retirement from the University of Piraeus, Greece. It offers a unique snapshot of the preference disaggregation philosophy in multiple criteria decision analysis and presents a range of research ideas, many of which were significantly influenced by Professor Siskos work.