Recent Advances in Contact Mechanics

Recent Advances in Contact Mechanics

Author: Georgios E. Stavroulakis

Publisher: Springer Science & Business Media

Published: 2012-10-19

Total Pages: 419

ISBN-13: 3642339689

DOWNLOAD EBOOK

Contact mechanics is an active research area with deep theoretical and numerical roots. The links between nonsmooth analysis and optimization with mechanics have been investigated intensively during the last decades, especially in Europe. The study of complementarity problems, variational -, quasivariational- and hemivariational inequalities arising in contact mechanics and beyond is a hot topic for interdisciplinary research and cooperation. The needs of industry for robust solution algorithms suitable for large scale applications and the regular updates of the respective elements in major commercial computational mechanics codes, demonstrate that this interaction is not restricted to the academic environment. The contributions of this book have been selected from the participants of the CMIS 2009 international conference which took place in Crete and continued a successful series of specialized contact mechanics conferences.


New Solutions in Contact Mechanics

New Solutions in Contact Mechanics

Author: Juergen Jaeger

Publisher: Witpress

Published: 2005

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

&Quot;The result of around 20 years of research by the author, this book features some previously unpublished solutions that will be useful for scientific investigation and mechanical design. A boundary element algorithm for contact with friction is discussed and a demonstration version with 800 contact points is included on an accompanying CD-ROM.". "All of the chapters are more or less self-contained, while the derivations used are suitable for undergraduate students. Readers will also find new information, such as the correspondence between friction and normal contact conditions, which may aid further developments in this field."--BOOK JACKET.


Handbook of Contact Mechanics

Handbook of Contact Mechanics

Author: Valentin L. Popov

Publisher: Springer

Published: 2019-04-26

Total Pages: 357

ISBN-13: 3662587092

DOWNLOAD EBOOK

This open access book contains a structured collection of the complete solutions of all essential axisymmetric contact problems. Based on a systematic distinction regarding the type of contact, the regime of friction and the contact geometry, a multitude of technically relevant contact problems from mechanical engineering, the automotive industry and medical engineering are discussed. In addition to contact problems between isotropic elastic and viscoelastic media, contact problems between transversal-isotropic elastic materials and functionally graded materials are addressed, too. The optimization of the latter is a focus of current research especially in the fields of actuator technology and biomechanics. The book takes into account adhesive effects which allow access to contact-mechanical questions about micro- and nano-electromechanical systems. Solutions of the contact problems include both the relationships between the macroscopic force, displacement and contact length, as well as the stress and displacement fields at the surface and, if appropriate, within the half-space medium. Solutions are always obtained with the simplest available method - usually with the method of dimensionality reduction (MDR) or approaches which use the solution of the non-adhesive normal contact problem to solve the respective contact problem.


Numerical Methods in Contact Mechanics

Numerical Methods in Contact Mechanics

Author: Vladislav A. Yastrebov

Publisher: John Wiley & Sons

Published: 2013-02-13

Total Pages: 303

ISBN-13: 1118648056

DOWNLOAD EBOOK

Computational contact mechanics is a broad topic which brings together algorithmic, geometrical, optimization and numerical aspects for a robust, fast and accurate treatment of contact problems. This book covers all the basic ingredients of contact and computational contact mechanics: from efficient contact detection algorithms and classical optimization methods to new developments in contact kinematics and resolution schemes for both sequential and parallel computer architectures. The book is self-contained and intended for people working on the implementation and improvement of contact algorithms in a finite element software. Using a new tensor algebra, the authors introduce some original notions in contact kinematics and extend the classical formulation of contact elements. Some classical and new resolution methods for contact problems and associated ready-to-implement expressions are provided. Contents: 1. Introduction to Computational Contact. 2. Geometry in Contact Mechanics. 3. Contact Detection. 4. Formulation of Contact Problems. 5. Numerical Procedures. 6. Numerical Examples. About the Authors Vladislav A. Yastrebov is a postdoctoral-fellow in Computational Solid Mechanics at MINES ParisTech in France. His work in computational contact mechanics was recognized by the CSMA award and by the Prix Paul Caseau of the French Academy of Technology and Electricité de France.


Advances In Computational Coupling And Contact Mechanics

Advances In Computational Coupling And Contact Mechanics

Author: Luis Rodriguez-tembleque

Publisher: World Scientific

Published: 2018-04-20

Total Pages: 416

ISBN-13: 1786344793

DOWNLOAD EBOOK

This book presents recent advances in the field of computational coupling and contact mechanics with particular emphasis on numerical formulations and methodologies necessary to solve advanced engineering applications.Featuring contributions from leading experts and active researchers in these fields who provide a detailed overview of different modern numerical schemes that can be considered by main numerical methodologies to simulate interaction problems in continuum mechanics.A number of topics are addressed, including formulations based on the finite element method (FEM) and their variants (e.g. isogeometric analysis or standard and generalized high-order FEM: hp-FEM and GFEM, respectively), the boundary element method (BEM), the material point method (MPM) or the recently proposed finite block method (FBM), among many more.Written with PhD students in mind, Advances in Computational Coupling and Contact Mechanics also includes the most recent numerical techniques which could be served as reference material for researchers and practicing engineers. All chapters are self-contained and can be read independently, with numerical formulations accompanied by practical engineering applications.Related Link(s)


Computational Contact Mechanics

Computational Contact Mechanics

Author: Peter Wriggers

Publisher: Springer Science & Business Media

Published: 2008-04-01

Total Pages: 252

ISBN-13: 3211772987

DOWNLOAD EBOOK

Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems.


Granular Dynamics, Contact Mechanics and Particle System Simulations

Granular Dynamics, Contact Mechanics and Particle System Simulations

Author: Colin Thornton

Publisher: Springer

Published: 2015-09-03

Total Pages: 202

ISBN-13: 3319187112

DOWNLOAD EBOOK

This book is devoted to the Discrete Element Method (DEM) technique, a discontinuum modelling approach that takes into account the fact that granular materials are composed of discrete particles which interact with each other at the microscale level. This numerical simulation technique can be used both for dispersed systems in which the particle-particle interactions are collisional and compact systems of particles with multiple enduring contacts. The book provides an extensive and detailed explanation of the theoretical background of DEM. Contact mechanics theories for elastic, elastic-plastic, adhesive elastic and adhesive elastic-plastic particle-particle interactions are presented. Other contact force models are also discussed, including corrections to some of these models as described in the literature, and important areas of further research are identified. A key issue in DEM simulations is whether or not a code can reliably simulate the simplest of systems, namely the single particle oblique impact with a wall. This is discussed using the output obtained from the contact force models described earlier, which are compared for elastic and inelastic collisions. In addition, further insight is provided for the impact of adhesive particles. The author then moves on to provide the results of selected DEM applications to agglomerate impacts, fluidised beds and quasi-static deformation, demonstrating that the DEM technique can be used (i) to mimic experiments, (ii) explore parameter sweeps, including limiting values, or (iii) identify new, previously unknown, phenomena at the microscale. In the DEM applications the emphasis is on discovering new information that enhances our rational understanding of particle systems, which may be more significant than developing a new continuum model that encompasses all microstructural aspects, which would most likely prove too complicated for practical implementation. The book will be of interest to academic and industrial researchers working in particle technology/process engineering and geomechanics, both experimentalists and theoreticians.


Introduction to Contact Mechanics

Introduction to Contact Mechanics

Author: Anthony C. Fischer-Cripps

Publisher: Springer Science & Business Media

Published: 2000-04-27

Total Pages: 213

ISBN-13: 0387989145

DOWNLOAD EBOOK

Mechanical engineering, an engineering discipline forged and shaped by the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions. The Mechanical Engineering Series features graduate texts and research mo- graphs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and - search. We are fortunate to have a distinguished roster of consulting editors on the advisory board, each an expert in one of the areas of concentration. The names of the consulting editors are listed on the facing page of this volume. The areas of concentration are applied mechanics, biomechanics, computational - chanics, dynamic systems and control, energetics, mechanics of materials, pr- essing, production systems, thermal science, and tribology. Professor Finnie, the consulting editor for mechanics of materials, and I are pleased to present Introduction to Contact Mechanics by Anthony C. Fischer- Cripps.


Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics

Author: Francois Nicot

Publisher: Elsevier

Published: 2017-11-20

Total Pages: 388

ISBN-13: 0081025963

DOWNLOAD EBOOK

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale