Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes

Author: Miguel Cerrolaza

Publisher: Academic Press

Published: 2017-12-28

Total Pages: 462

ISBN-13: 0128117192

DOWNLOAD EBOOK

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems


Advanced Computational Methods in Science and Engineering

Advanced Computational Methods in Science and Engineering

Author: Barry Koren

Publisher: Springer Science & Business Media

Published: 2009-09-30

Total Pages: 501

ISBN-13: 364203344X

DOWNLOAD EBOOK

The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.


Advances in Computational Methods for Simulation

Advances in Computational Methods for Simulation

Author: B. H. V. Topping

Publisher: Civil Comp Press

Published: 1996

Total Pages: 252

ISBN-13: 9780948749445

DOWNLOAD EBOOK

Includes a selection of papers that were presented at the Third International Conference on Computational Structures Technology, which was held from 21-23 August 1996, at Budapest, Hungary.


Advances in Numerical Methods

Advances in Numerical Methods

Author: Nikos Mastorakis

Publisher: Springer Science & Business Media

Published: 2009-07-09

Total Pages: 443

ISBN-13: 0387764836

DOWNLOAD EBOOK

Recent Advances in Numerical Methods features contributions from distinguished researchers, focused on significant aspects of current numerical methods and computational mathematics. The increasing necessity to present new computational methods that can solve complex scientific and engineering problems requires the preparation of this volume with actual new results and innovative methods that provide numerical solutions in effective computing times. Each chapter will present new and advanced methods and modern variations on known techniques that can solve difficult scientific problems efficiently.


Advances in Computational Modeling and Simulation

Advances in Computational Modeling and Simulation

Author: Rallapalli Srinivas

Publisher: Springer

Published: 2023-02-17

Total Pages: 0

ISBN-13: 9789811678592

DOWNLOAD EBOOK

The book presents select proceedings of Global meet on ‘Computational Modelling and Simulation, Recent Innovations, Challenges and Perspectives, 2020. This book covers leading-edge technologies from different domains such as computation in optimization and control, multiscale and multiphysics modeling and computation analysis, environmental modeling, modeling approaches to enterprise systems and services, finite element analysis, dependability and security, high-performance computation/cloud computing applications, computational biology and chemistry and computational mechanics. The primary goal of this book is to strengthen pre-eminence in computational modeling and simulation by catalyzing the transformative use of innovative developments in a wide range of disciplines to achieve lasting societal impact. The book discusses on how to perform simulation of large complex dynamic systems in an efficient manner using advanced computational analysis. The inter-disciplinary nature of the book would be a valuable reference for academicians and research scientists, industrialists interested in modelling and simulation driven by computational technology.


Modeling and Computational Methods for Kinetic Equations

Modeling and Computational Methods for Kinetic Equations

Author: Pierre Degond

Publisher: Springer Science & Business Media

Published: 2004-04-07

Total Pages: 372

ISBN-13: 9780817632540

DOWNLOAD EBOOK

In recent years kinetic theory has developed in many areas of the physical sciences and engineering, and has extended the borders of its traditional fields of application. New applications in traffic flow engineering, granular media modeling, and polymer and phase transition physics have resulted in new numerical algorithms which depart from traditional stochastic Monte--Carlo methods. This monograph is a self-contained presentation of such recently developed aspects of kinetic theory, as well as a comprehensive account of the fundamentals of the theory. Emphasizing modeling techniques and numerical methods, the book provides a unified treatment of kinetic equations not found in more focused theoretical or applied works. The book is divided into two parts. Part I is devoted to the most fundamental kinetic model: the Boltzmann equation of rarefied gas dynamics. Additionally, widely used numerical methods for the discretization of the Boltzmann equation are reviewed: the Monte--Carlo method, spectral methods, and finite-difference methods. Part II considers specific applications: plasma kinetic modeling using the Landau--Fokker--Planck equations, traffic flow modeling, granular media modeling, quantum kinetic modeling, and coagulation-fragmentation problems. Modeling and Computational Methods of Kinetic Equations will be accessible to readers working in different communities where kinetic theory is important: graduate students, researchers and practitioners in mathematical physics, applied mathematics, and various branches of engineering. The work may be used for self-study, as a reference text, or in graduate-level courses in kinetic theory and its applications.


Computational Methods In Large Scale Simulation

Computational Methods In Large Scale Simulation

Author: Heow-pueh Lee

Publisher: World Scientific

Published: 2005-10-26

Total Pages: 395

ISBN-13: 9814480207

DOWNLOAD EBOOK

This volume documents the research carried out by visiting scientists attached to the Institute for Mathematical Sciences (IMS) at the National University of Singapore and the Institute of High Performance Computing (IHPC) under the program “Advances and Mathematical Issues in Large Scale Simulation.” From 2002 to 2003, researchers from various countries gathered to initiate interesting and innovative work on various themes related to multiscale simulation and fast algorithms.Today, modeling and simulation are used extensively to solve complex problems and to reduce the use of experimentation during the design and analysis stage. It is important to know the various issues that have to be considered in the successful development of computational methodologies for such work.This volume is a compilation of the research by various visiting scientists in the area of modeling and multiscale simulation. Each article covers a major project and documents how computational methodology, mathematical modeling, high performance computing and simulation are combined in a multiscale scheme to solve a variety of complex problems. Some of these include the design, synthesis, processing, characterization and manufacture of nanomaterials and nanostructures, new algorithms for computational work, and grid computing.Through the included examples, readers can realize the vast potential of computational modeling and large scale simulation for the solution of problems in a variety of disciplines and applications.


Advances in Computational Plasticity

Advances in Computational Plasticity

Author: Eugenio Oñate

Publisher: Springer

Published: 2017-09-09

Total Pages: 443

ISBN-13: 3319608851

DOWNLOAD EBOOK

This book brings together some 20 chapters on state-of-the-art research in the broad field of computational plasticity with applications in civil and mechanical engineering, metal forming processes, geomechanics, nonlinear structural analysis, composites, biomechanics and multi-scale analysis of materials, among others. The chapters are written by world leaders in the different fields of computational plasticity.


Mathematical and Computational Methods for Modelling, Approximation and Simulation

Mathematical and Computational Methods for Modelling, Approximation and Simulation

Author: Domingo Barrera

Publisher: Springer

Published: 2023-05-09

Total Pages: 0

ISBN-13: 9783030943417

DOWNLOAD EBOOK

This book contains plenary lectures given at the International Conference on Mathematical and Computational Modeling, Approximation and Simulation, dealing with three very different problems: reduction of Runge and Gibbs phenomena, difficulties arising when studying models that depend on the highly nonlinear behaviour of a system of PDEs, and data fitting with truncated hierarchical B-splines for the adaptive reconstruction of industrial models. The book includes nine contributions, mostly related to quasi-interpolation. This is a topic that continues to register a high level of interest, both for those working in the field of approximation theory and for those interested in its use in a practical context. Two chapters address the construction of quasi-interpolants, and three others focus on the use of quasi-interpolation in solving integral equations. The remaining four concern a problem related to the heat diffusion equation, new results on the notion of convexity in probabilistic metric spaces (which are applied to the study of the existence and uniqueness of the solution of a Volterra equation), the use of smoothing splines to address an economic problem and, finally, the analysis of poverty measures, which is a topic of increased interest to society. The book is addressed to researchers interested in Applied Mathematics, with particular reference to the aforementioned topics.


Computational Methods for Inverse Problems

Computational Methods for Inverse Problems

Author: Curtis R. Vogel

Publisher: SIAM

Published: 2002-01-01

Total Pages: 195

ISBN-13: 0898717574

DOWNLOAD EBOOK

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.