The Economics of Artificial Intelligence

The Economics of Artificial Intelligence

Author: Ajay Agrawal

Publisher: University of Chicago Press

Published: 2024-03-05

Total Pages: 172

ISBN-13: 0226833127

DOWNLOAD EBOOK

A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.


Advances in Artificial Economics

Advances in Artificial Economics

Author: Frédéric Amblard

Publisher: Springer

Published: 2014-11-08

Total Pages: 244

ISBN-13: 3319095781

DOWNLOAD EBOOK

​The book presents a peer-reviewed collection of papers presented during the 10th issue of the Artificial Economics conference, addressing a variety of issues related to macroeconomics, industrial organization, networks, management and finance, as well as purely methodological issues. The field of artificial economics covers a broad range of methodologies relying on computer simulations in order to model and study the complexity of economic and social phenomena. The grounding principle of artificial economics is the analysis of aggregate properties of simulated systems populated by interacting adaptive agents that are equipped with heterogeneous individual behavioral rules. These macroscopic properties are neither foreseen nor intended by the artificial agents but generated collectively by them. They are emerging characteristics of such artificially simulated systems.


Artificial Intelligence in Economics and Finance Theories

Artificial Intelligence in Economics and Finance Theories

Author: Tankiso Moloi

Publisher: Springer Nature

Published: 2020-05-07

Total Pages: 131

ISBN-13: 3030429628

DOWNLOAD EBOOK

As Artificial Intelligence (AI) seizes all aspects of human life, there is a fundamental shift in the way in which humans are thinking of and doing things. Ordinarily, humans have relied on economics and finance theories to make sense of, and predict concepts such as comparative advantage, long run economic growth, lack or distortion of information and failures, role of labour as a factor of production and the decision making process for the purpose of allocating resources among other theories. Of interest though is that literature has not attempted to utilize these advances in technology in order to modernize economic and finance theories that are fundamental in the decision making process for the purpose of allocating scarce resources among other things. With the simulated intelligence in machines, which allows machines to act like humans and to some extent even anticipate events better than humans, thanks to their ability to handle massive data sets, this book will use artificial intelligence to explain what these economic and finance theories mean in the context of the agent wanting to make a decision. The main feature of finance and economic theories is that they try to eliminate the effects of uncertainties by attempting to bring the future to the present. The fundamentals of this statement is deeply rooted in risk and risk management. In behavioural sciences, economics as a discipline has always provided a well-established foundation for understanding uncertainties and what this means for decision making. Finance and economics have done this through different models which attempt to predict the future. On its part, risk management attempts to hedge or mitigate these uncertainties in order for “the planner” to reach the favourable outcome. This book focuses on how AI is to redefine certain important economic and financial theories that are specifically used for the purpose of eliminating uncertainties so as to allow agents to make informed decisions. In effect, certain aspects of finance and economic theories cannot be understood in their entirety without the incorporation of AI.


Artificial Intelligence and Economic Theory: Skynet in the Market

Artificial Intelligence and Economic Theory: Skynet in the Market

Author: Tshilidzi Marwala

Publisher: Springer

Published: 2017-09-18

Total Pages: 206

ISBN-13: 3319661043

DOWNLOAD EBOOK

This book theoretically and practically updates major economic ideas such as demand and supply, rational choice and expectations, bounded rationality, behavioral economics, information asymmetry, pricing, efficient market hypothesis, game theory, mechanism design, portfolio theory, causality and financial engineering in the age of significant advances in man-machine systems. The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence concepts such as the swarming of birds, the working of the brain and the pathfinding of the ants. Artificial Intelligence and Economic Theory: Skynet in the Market analyses the impact of artificial intelligence on economic theories, a subject that has not been studied. It also introduces new economic theories and these are rational counterfactuals and rational opportunity costs. These ideas are applied to diverse areas such as modelling of the stock market, credit scoring, HIV and interstate conflict. Artificial intelligence ideas used in this book include neural networks, particle swarm optimization, simulated annealing, fuzzy logic and genetic algorithms. It, furthermore, explores ideas in causality including Granger as well as the Pearl causality models.


Emergent Results of Artificial Economics

Emergent Results of Artificial Economics

Author: Sjoukje Osinga

Publisher: Springer Science & Business Media

Published: 2011-06-22

Total Pages: 226

ISBN-13: 3642211089

DOWNLOAD EBOOK

Artificial economics is a computational approach that aims to explain economic systems by modeling them as societies of intelligent software agents. The individual agents make autonomous decisions, but their actual behaviors are constrained by available resources, other individuals' behaviors, and institutions. Intelligent software agents have communicative skills that enable simulation of negotiation, trade, reputation, and other forms of knowledge transfer that are at the basis of economic life. Incorporated learning mechanisms may adapt the agents' behaviors. In artificial economics, all system behavior is generated from the individual agents' simulated decisions; no system level laws are a priori imposed. For instance, price convergence and market clearing may emerge, but not necessarily. Thus, artificial economics facilitates the study of the mechanisms that make the economy function. This book presents a selection of peer-reviewed papers addressing recent developments in this field between economics and computer science.


Economic Modeling Using Artificial Intelligence Methods

Economic Modeling Using Artificial Intelligence Methods

Author: Tshilidzi Marwala

Publisher: Springer Science & Business Media

Published: 2013-04-02

Total Pages: 271

ISBN-13: 1447150104

DOWNLOAD EBOOK

Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.


Artificial Economics and Self Organization

Artificial Economics and Self Organization

Author: Stephan Leitner

Publisher: Springer

Published: 2013-08-27

Total Pages: 256

ISBN-13: 9783319009117

DOWNLOAD EBOOK

This volume presents recent advances in the dynamic field of Artificial Economics and its various applications. Artificial Economics provides a structured approach to model and investigate economic and social systems. In particular, this approach is based on the use of agent-based simulations and further computational techniques. The main aim is to analyze the outcomes at the overall systems’ level as results from the agents’ behavior at the micro-level. These emergent characteristics of complex economic and social systems can neither be foreseen nor are they intended. The emergence rather makes these systems function. Artificial Economics especially facilitates the investigation of this emergent systems’ behavior. ​


Progress in Artificial Economics

Progress in Artificial Economics

Author: Marco Li Calzi

Publisher: Springer Science & Business Media

Published: 2010-08-22

Total Pages: 279

ISBN-13: 3642139477

DOWNLOAD EBOOK

Artificial economics aims to provide a generative approach to understanding problems in economics and social sciences. It is based on the consistent use of agent-based models and computational techniques. It encompasses a rich variety of techniques that generalize numerical analysis, mathematical programming, and micro-simulations. The peer-reviewed contributions in this volume address applications of artificial economics to markets and trading, auctions, networks, management, industry sectors, macroeconomics, and demographics and culture.


Artificial Economics

Artificial Economics

Author: Ruben Mercado

Publisher: Cambridge University Press

Published: 2021-11-04

Total Pages: 197

ISBN-13: 1316517098

DOWNLOAD EBOOK

An introductory overview of the methods, models and interdisciplinary links of artificial economics. Addresses the differences between the assumptions and methods of artificial economics and those of mainstream economics. This is one of the first books to fully address, in an intuitive and conceptual form, this new way of doing economics.


Artificial Intelligence in Financial Markets

Artificial Intelligence in Financial Markets

Author: Christian L. Dunis

Publisher: Springer

Published: 2016-11-21

Total Pages: 349

ISBN-13: 1137488808

DOWNLOAD EBOOK

As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field.