This book presents biotechnological advances and approaches to improving the nutritional value of agri-foods. The respective chapters explore how biotechnology is being used to enhance food production, nutritional quality, food safety and food packaging, and to address postharvest issues. Written and prepared by eminent scientists working in the field of food biotechnology, the book offers authentic, reliable and detailed information on technological advances, fundamental principles, and the applications of recent innovations. Accordingly, it offers a valuable guide for researchers, as well as undergraduate and graduate students in the fields of biotechnology, agriculture and food technology.
The application of biotechnology in the food sciences has led to an increase in food production and enhanced the quality and safety of food. Food biotechnology is a dynamic field and the continual progress and advances have not only dealt effectively with issues related to food security but also augmented the nutritional and health aspects of food. Advances in Food Biotechnology provides an overview of the latest development in food biotechnology as it relates to safety, quality and security. The seven sections of the book are multidisciplinary and cover the following topics: GMOs and food security issues Applications of enzymes in food processing Fermentation technology Functional food and nutraceuticals Valorization of food waste Detection and control of foodborne pathogens Emerging techniques in food processing Bringing together experts drawn from around the world, the book is a comprehensive reference in the most progressive field of food science and will be of interest to professionals, scientists and academics in the food and biotech industries. The book will be highly resourceful to governmental research and regulatory agencies and those who are studying and teaching food biotechnology.
For nearly a century, scientific advances have fueled progress in U.S. agriculture to enable American producers to deliver safe and abundant food domestically and provide a trade surplus in bulk and high-value agricultural commodities and foods. Today, the U.S. food and agricultural enterprise faces formidable challenges that will test its long-term sustainability, competitiveness, and resilience. On its current path, future productivity in the U.S. agricultural system is likely to come with trade-offs. The success of agriculture is tied to natural systems, and these systems are showing signs of stress, even more so with the change in climate. More than a third of the food produced is unconsumed, an unacceptable loss of food and nutrients at a time of heightened global food demand. Increased food animal production to meet greater demand will generate more greenhouse gas emissions and excess animal waste. The U.S. food supply is generally secure, but is not immune to the costly and deadly shocks of continuing outbreaks of food-borne illness or to the constant threat of pests and pathogens to crops, livestock, and poultry. U.S. farmers and producers are at the front lines and will need more tools to manage the pressures they face. Science Breakthroughs to Advance Food and Agricultural Research by 2030 identifies innovative, emerging scientific advances for making the U.S. food and agricultural system more efficient, resilient, and sustainable. This report explores the availability of relatively new scientific developments across all disciplines that could accelerate progress toward these goals. It identifies the most promising scientific breakthroughs that could have the greatest positive impact on food and agriculture, and that are possible to achieve in the next decade (by 2030).
This new volume, Biocatalysis and Agricultural Biotechnology: Fundamentals, Advances, and Practices for a Greener Future, looks at the application of a variety of technologies, both fundamental and advanced, that are being used for crop improvement, metabolic engineering, and the development of transgenic plants. The science of agriculture is among the oldest and most intensely studied by mankind. Human intervention has led to manipulation of plant gene structure for the use of plants for the production of bioenergy, food, textiles, among other industrial uses. A sound knowledge of enzymology as well as the various biosynthetic pathways is required to further utilize microbes as sources to provide the desired products for industrial utility. This volume provides an overview of all these aspects along with an updated review of the major plant biotechnology procedures and techniques, their impact on novel agricultural development, and crop plant improvement. Also discussed are the use of "white biotechnology" and "metabolic engineering" as prerequisites for a sustainable development. The importance of patenting of plant products, world food safety, and the role of several imminent organizations is also discussed. The volume provides an holistic view that makes it a valuable source of information for researchers of agriculture and biotechnology as well as agricultural engineers, environmental biologists, environmental engineers, and environmentalists. Short exercises at the end of the chapters help to make the book suitable for course work in agriculture biotechnology, genetics, biology, biotechnology, and plant science.
Biotechnology can bring major breakthroughs in agriculture. The book examines the experience of introduction of biotechnology in Indian agriculture, specifically, examining the performance of Bt cotton versus non-Bt cotton across India’s major cotton states, namely Andhra Pradesh, Gujarat, Maharashtra and Tamil Nadu, which together account for nearly 70 percent of the country’s cotton production. Major advances in biotechnology have made it possible to directly identify genes, determine their functions, and transfer them from one organism to another. The advances have spawned many technologies and Bt cotton is one important outcome. Bt cotton has become one of the most widely cultivated transgenic crops and is currently grown in 21 countries - 11 developing and 10 industrialized countries. The Government of India was relatively late in permitting biotechnology, only approving the cultivation of three transgenic Bt cotton hybrids from April 2002. Many concerns were raised about their performance there was strong opposition from some quarters. In India, Gujarat and Maharastra were the first states to adopt them, followed by Andhra Pradesh, Karnataka, Tamil Nadu and Madhya Pradesh. Based on a sample of 694 farming households, the book examines and analyzes the performance on the yields, pesticide costs, seed costs, overall production costs and profits. It also reports on the environmental impacts, satisfaction with the technology and ways of improving its performance.
Transgenic crops offer the promise of increased agricultural productivity and better quality foods. But they also raise the specter of harmful environmental effects. In this new book, a panel of experts examines: • Similarities and differences between crops developed by conventional and transgenic methods • Potential for commercialized transgenic crops to change both agricultural and nonagricultural landscapes • How well the U.S. government is regulating transgenic crops to avoid any negative effects. Environmental Effects of Transgenic Plants provides a wealth of information about transgenic processes, previous experience with the introduction of novel crops, principles of risk assessment and management, the science behind current regulatory schemes, issues in monitoring transgenic products already on the market, and more. The book discusses public involvementâ€"and public confidenceâ€"in biotechnology regulation. And it looks to the future, exploring the potential of genetic engineering and the prospects for environmental effects.
Worldwide energy and food crises are spotlighting the importance of bio-based products - an area many are calling on for solutions to these shortages. Biocatalysis and Agricultural Biotechnology encapsulates the cutting-edge advances in the field with contributions from more than 50 international experts comprising sectors of academia, industry, an
An instructive and comprehensive overview of the use of biotechnology in agriculture and food production, Biotechnology in Agriculture and Food Processing: Opportunities and Challenges discusses how biotechnology can improve the quality and productivity of agriculture and food products. It includes current topics such as GM foods, enzymes, and prod
Advances in Biotechnology for Food Industry, Volume Fourteen in the Handbook of Food Bioengineering series, provides recent insight into how biotechnology impacts the global food industry and describes how food needs are diverse, requiring the development of innovative biotechnological processes to ensure efficient food production worldwide. Many approaches were developed over the last 10 years to allow faster, easier production of widely used foods, food components and therapeutic food ingredients. This volume shows how biotechnological processes increase production and quality of food products, including the development of anti-biofilm materials to decrease microbial colonization in bioreactors and food processing facilities. - Presents basic to advanced technological applications in food biotechnology - Includes various scientific techniques used to produce specific desired traits in plants, animals and microorganisms - Provides scientific advances in food processing and their impact on the environment, human health and food safety - Discusses the development of controlled co-cultivations for reproducible results in fermentation processes in food biotechnology
Considering the ever-increasing global population and finite arable land, technology and sustainable agricultural practices are required to improve crop yield. This book examines the interaction between plants and microbes and considers the use of advanced techniques such as genetic engineering, revolutionary gene editing technologies, and their applications to understand how plants and microbes help or harm each other at the molecular level. Understanding plant-microbe interactions and related gene editing technologies will provide new possibilities for sustainable agriculture. The book will be extremely useful for researchers working in the fields of plant science, molecular plant biology, plant-microbe interactions, plant engineering technology, agricultural microbiology, and related fields. It will be useful for upper-level students and instructors specifically in the field of biotechnology, microbiology, biochemistry, and agricultural science. Features: Examines the most advanced approaches for genetic engineering of agriculture (CRISPR, TALAN, ZFN, etc.). Discusses the microbiological control of various plant diseases. Explores future perspectives for research in microbiological plant science. Plant-Microbial Interactions and Smart Agricultural Biotechnology will serve as a useful source of cutting-edge information for researchers and innovative professionals, as well as upper-level undergraduate and graduate students taking related agriculture and environmental science courses.