If you've mastered traditional Sudoku, you will love Advanced Sudoku with additional challenges not found anywhere else. Take your Sudoku skills to optimal levels and enter a new dimension with the HELIX puzzle. Enjoy the challenge!
Very broad overview of the field intended for an interdisciplinary audience; Lively discussion of current challenges written in a colloquial style; Author is a rising star in this discipline; Suitably accessible for beginners and suitably rigorous for experts; Features extensive four-color illustrations; Appendices featuring homework assignments and reading lists complement the material in the main text
The Sourcebook for Teaching Science is a unique, comprehensive resource designed to give middle and high school science teachers a wealth of information that will enhance any science curriculum. Filled with innovative tools, dynamic activities, and practical lesson plans that are grounded in theory, research, and national standards, the book offers both new and experienced science teachers powerful strategies and original ideas that will enhance the teaching of physics, chemistry, biology, and the earth and space sciences.
Project Origami: Activities for Exploring Mathematics, Second Edition presents a flexible, discovery-based approach to learning origami-math topics. It helps readers see how origami intersects a variety of mathematical topics, from the more obvious realm of geometry to the fields of algebra, number theory, and combinatorics. With over 100 new pages, this updated and expanded edition now includes 30 activities and offers better solutions and teaching tips for all activities. The book contains detailed plans for 30 hands-on, scalable origami activities. Each activity lists courses in which the activity might fit, includes handouts for classroom use, and provides notes for instructors on solutions, how the handouts can be used, and other pedagogical suggestions. The handouts are also available on the book’s CRC Press web page. Reflecting feedback from teachers and students who have used the book, this classroom-tested text provides an easy and entertaining way for teachers to incorporate origami into a range of college and advanced high school math courses. Visit the author’s website for more information.
The fun and simple problem-solving guide that took Japan by storm Ken Watanabe originally wrote Problem Solving 101 for Japanese schoolchildren. His goal was to help shift the focus in Japanese education from memorization to critical thinking, by adapting some of the techniques he had learned as an elite McKinsey consultant. He was amazed to discover that adults were hungry for his fun and easy guide to problem solving and decision making. The book became a surprise Japanese bestseller, with more than 370,000 in print after six months. Now American businesspeople can also use it to master some powerful skills. Watanabe uses sample scenarios to illustrate his techniques, which include logic trees and matrixes. A rock band figures out how to drive up concert attendance. An aspiring animator budgets for a new computer purchase. Students decide which high school they will attend. Illustrated with diagrams and quirky drawings, the book is simple enough for a middleschooler to understand but sophisticated enough for business leaders to apply to their most challenging problems.
A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.
From paintings and food to illness and icebergs, science is happening everywhere. Rather than follow the path of a syllabus or textbook, Andrew Morris takes examples from the science we see every day and uses them as entry points to explain a number of fundamental scientific concepts – from understanding colour to the nature of hormones – in ways that anyone can grasp. While each chapter offers a separate story, they are linked together by their fascinating relevance to our daily lives. The topics explored in each chapter are based on hundreds of discussions the author has led with adult science learners over many years – people who came from all walks of life and had no scientific training, but had developed a burning curiosity to understand the world around them. This book encourages us to reflect on our own relationship with science and serves as an important reminder of why we should continue learning as adults.
The seventeen equations that form the basis for life as we know it. Most people are familiar with history's great equations: Newton's Law of Gravity, for instance, or Einstein's theory of relativity. But the way these mathematical breakthroughs have contributed to human progress is seldom appreciated. In In Pursuit of the Unknown, celebrated mathematician Ian Stewart untangles the roots of our most important mathematical statements to show that equations have long been a driving force behind nearly every aspect of our lives. Using seventeen of our most crucial equations -- including the Wave Equation that allowed engineers to measure a building's response to earthquakes, saving countless lives, and the Black-Scholes model, used by bankers to track the price of financial derivatives over time -- Stewart illustrates that many of the advances we now take for granted were made possible by mathematical discoveries. An approachable, lively, and informative guide to the mathematical building blocks of modern life, In Pursuit of the Unknown is a penetrating exploration of how we have also used equations to make sense of, and in turn influence, our world.
A multifaceted biography of a brilliant mathematician and iconoclast A mathematician unlike any other, John Horton Conway (1937–2020) possessed a rock star’s charisma, a polymath’s promiscuous curiosity, and a sly sense of humor. Conway found fame as a barefoot professor at Cambridge, where he discovered the Conway groups in mathematical symmetry and the aptly named surreal numbers. He also invented the cult classic Game of Life, a cellular automaton that demonstrates how simplicity generates complexity—and provides an analogy for mathematics and the entire universe. Moving to Princeton in 1987, Conway used ropes, dice, pennies, coat hangers, and the occasional Slinky to illustrate his winning imagination and share his nerdish delights. Genius at Play tells the story of this ambassador-at-large for the beauties and joys of mathematics, lays bare Conway’s personal and professional idiosyncrasies, and offers an intimate look into the mind of one of the twentieth century’s most endearing and original intellectuals.
Kids of all ages will love to lose themselves in this bumper book of mazes. With hundreds of twists and turns, the magical mazes get more fiendish with every turn of the page.