Advanced Sliding Mode Control for Mechanical Systems

Advanced Sliding Mode Control for Mechanical Systems

Author: Jinkun Liu

Publisher: Springer Science & Business Media

Published: 2012-09-07

Total Pages: 367

ISBN-13: 3642209076

DOWNLOAD EBOOK

"Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation" takes readers through the basic concepts, covering the most recent research in sliding mode control. The book is written from the perspective of practical engineering and examines numerous classical sliding mode controllers, including continuous time sliding mode control, discrete time sliding mode control, fuzzy sliding mode control, neural sliding mode control, backstepping sliding mode control, dynamic sliding mode control, sliding mode control based on observer, terminal sliding mode control, sliding mode control for robot manipulators, and sliding mode control for aircraft. This book is intended for engineers and researchers working in the field of control. Dr. Jinkun Liu works at Beijing University of Aeronautics and Astronautics and Dr. Xinhua Wang works at the National University of Singapore.


Sliding Mode Control in Electro-Mechanical Systems

Sliding Mode Control in Electro-Mechanical Systems

Author: Vadim Utkin

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 503

ISBN-13: 1420065610

DOWNLOAD EBOOK

Apply Sliding Mode Theory to Solve Control Problems Interest in SMC has grown rapidly since the first edition of this book was published. This second edition includes new results that have been achieved in SMC throughout the past decade relating to both control design methodology and applications. In that time, Sliding Mode Control (SMC) has continued to gain increasing importance as a universal design tool for the robust control of linear and nonlinear electro-mechanical systems. Its strengths result from its simple, flexible, and highly cost-effective approach to design and implementation. Most importantly, SMC promotes inherent order reduction and allows for the direct incorporation of robustness against system uncertainties and disturbances. These qualities lead to dramatic improvements in stability and help enable the design of high-performance control systems at low cost. Written by three of the most respected experts in the field, including one of its originators, this updated edition of Sliding Mode Control in Electro-Mechanical Systems reflects developments in the field over the past decade. It builds on the solid fundamentals presented in the first edition to promote a deeper understanding of the conventional SMC methodology, and it examines new design principles in order to broaden the application potential of SMC. SMC is particularly useful for the design of electromechanical systems because of its discontinuous structure. In fact, where the hardware of many electromechanical systems (such as electric motors) prescribes discontinuous inputs, SMC becomes the natural choice for direct implementation. This book provides a unique combination of theory, implementation issues, and examples of real-life applications reflective of the authors’ own industry-leading work in the development of robotics, automobiles, and other technological breakthroughs.


Advanced Control Design with Application to Electromechanical Systems

Advanced Control Design with Application to Electromechanical Systems

Author: Magdi S. Mahmoud

Publisher: Butterworth-Heinemann

Published: 2018-04-12

Total Pages: 390

ISBN-13: 0128145447

DOWNLOAD EBOOK

Advanced Control Design with Application to Electromechanical Systems represents the continuing effort in the pursuit of analytic theory and rigorous design for robust control methods. The book provides an overview of the feedback control systems and their associated definitions, with discussions on finite dimension vector spaces, mappings and convex analysis. In addition, a comprehensive treatment of continuous control system design is presented, along with an introduction to control design topics pertaining to discrete-time systems. Other sections introduces linear H1 and H2 theory, dissipativity analysis and synthesis, and a wide spectrum of models pertaining to electromechanical systems. Finally, the book examines the theory and mathematical analysis of multiagent systems. Researchers on robust control theory and electromechanical systems and graduate students working on robust control will benefit greatly from this book. - Introduces a coherent and unified framework for studying robust control theory - Provides the control-theoretic background required to read and contribute to the research literature - Presents the main ideas and demonstrations of the major results of robust control theory - Includes MATLAB codes to implement during research


Sliding Mode Control and Observation

Sliding Mode Control and Observation

Author: Yuri Shtessel

Publisher: Springer Science & Business Media

Published: 2013-06-01

Total Pages: 369

ISBN-13: 0817648933

DOWNLOAD EBOOK

The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbance observer based control *Numerous applications, including reusable launch vehicle and satellite formation control, blood glucose regulation, and car steering control are used as case studies Sliding Mode Control and Observation is aimed at graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems, while being of interest to a wider audience of graduate students in electrical/mechanical/aerospace engineering and applied mathematics, as well as researchers in electrical, computer, chemical, civil, mechanical, aeronautical, and industrial engineering, applied mathematicians, control engineers, and physicists. Sliding Mode Control and Observation provides the necessary tools for graduate students, researchers and engineers to robustly control complex and uncertain nonlinear dynamical systems. Exercises provided at the end of each chapter make this an ideal text for an advanced course taught in control theory.


Sliding Mode Control Using Novel Sliding Surfaces

Sliding Mode Control Using Novel Sliding Surfaces

Author: B. Bandyopadhyay

Publisher: Springer

Published: 2009-10-14

Total Pages: 147

ISBN-13: 3642034489

DOWNLOAD EBOOK

AfterasurveypaperbyUtkininthelate1970s,slidingmodecontrolmeth- ologies emerged as an e?ective tool to tackle uncertainty and disturbances which are inevitable in most of the practical systems. Sliding mode control is a particular class of variable structure control which was introduced by Emel’yanov and his colleagues. The design paradigms of sliding mode c- trol has now become a mature design technique for the design of robust c- troller of uncertain system. In sliding mode technique, the state trajectory of the system is constrained on a chosen manifold (or within some neighb- hood thereof) by an appropriatecontrolaction. This manifold is also called a switching surface or a sliding surface. During sliding mode, system dynamics is governed by the chosen manifold which results in a well celebrated inva- ance property towards certain classes of disturbance and model mismatches. The purpose of this monograph is to give a di?erent dimension to sl- ing surface design to achieve high performance of the system. Design of the switching surface is vital because the closed loop dynamics is governed by the parameters of the sliding surface. Therefore sliding surface should be - signed to meet the closed loop speci?cations. Many systems demand high performance with robustness. To address this issue of achieving high perf- mance with robustness, we propose nonlinear surfaces for di?erent classes of systems. The nonlinear surface is designed such that it changes the system’s closed-loop damping ratio from its initial low value to a ?nal high value.


Sliding Mode Control for Synchronous Electric Drives

Sliding Mode Control for Synchronous Electric Drives

Author: Sergey E. Ryvkin

Publisher: CRC Press

Published: 2011-11-21

Total Pages: 208

ISBN-13: 0203181387

DOWNLOAD EBOOK

This volume presents the theory of control systems with sliding mode applied to electrical motors and power converters. It demonstrates the methodology of control design and the original algorithms of control and observation. Practically all semiconductor devices are used in power converters, that feed electrical motors, as power switches. A switch


Advances and Applications in Sliding Mode Control systems

Advances and Applications in Sliding Mode Control systems

Author: Ahmad Taher Azar

Publisher: Springer

Published: 2014-11-01

Total Pages: 592

ISBN-13: 3319111736

DOWNLOAD EBOOK

This book describes the advances and applications in Sliding mode control (SMC) which is widely used as a powerful method to tackle uncertain nonlinear systems. The book is organized into 21 chapters which have been organised by the editors to reflect the various themes of sliding mode control. The book provides the reader with a broad range of material from first principles up to the current state of the art in the area of SMC and observation presented in a clear, matter-of-fact style. As such it is appropriate for graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems. The resulting design procedures are emphasized using Matlab/Simulink software.


Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Author: Jinkun Liu

Publisher: Springer Science & Business Media

Published: 2013-01-26

Total Pages: 375

ISBN-13: 3642348165

DOWNLOAD EBOOK

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.


Advanced Control of Electrical Drives and Power Electronic Converters

Advanced Control of Electrical Drives and Power Electronic Converters

Author: Jacek Kabziński

Publisher: Springer

Published: 2016-09-30

Total Pages: 391

ISBN-13: 3319457357

DOWNLOAD EBOOK

This contributed volume is written by key specialists working in multidisciplinary fields in electrical engineering, linking control theory, power electronics, artificial neural networks, embedded controllers and signal processing. The authors of each chapter report the state of the art of the various topics addressed and present results of their own research, laboratory experiments and successful applications. The presented solutions concentrate on three main areas of interest: · motion control in complex electromechanical systems, including sensorless control; · fault diagnosis and fault tolerant control of electric drives; · new control algorithms for power electronics converters. The chapters and the complete book possess strong monograph attributes. Important practical and theoretical problems are deeply and accurately presented on the background of an exhaustive state-of the art review. Many results are completely new and were never published before. Well-known control methods like field oriented control (FOC) or direct torque control (DTC) are referred as a starting point for modifications or are used for comparison. Among numerous control theories used to solve particular problems are: nonlinear control, robust control, adaptive control, Lyapunov techniques, observer design, model predictive control, neural control, sliding mode control, signal filtration and processing, fault diagnosis, and fault tolerant control.


Sliding Mode Control of Semi-Markovian Jump Systems

Sliding Mode Control of Semi-Markovian Jump Systems

Author: Baoping Jiang

Publisher: CRC Press

Published: 2021-08-23

Total Pages: 175

ISBN-13: 1000425975

DOWNLOAD EBOOK

This book presents analysis and design for a class of stochastic systems with semi-Markovian jump parameters. It explores systematic analysis of semi-Markovian jump systems via sliding mode control strategy which makes up the shortages in the analysis and design of stochastic systems. This text provides a novel estimation method to deal with the stochastic stability of semi-Markovian jump systems along with design of novel integral sliding surface. Finally, Takagi-Sugeno fuzzy model approach is brought to deal with system nonlinearities and fuzzy sliding mode control laws are provided to ensure the stabilization purpose. Features: Presents systematic work on sliding mode control (SMC) of semi-Markvoain jump systems. Explores SMC methods, such as fuzzy SMC, adaptive SMC, with the presence of generally uncertain transition rates. Provides novel method in dealing with stochastic systems with unknown switching information. Proposes more general theories for semi-Markovian jump systems with generally uncertain transition rates. Discusses practical examples to verify the effectiveness of SMC theory in semi-Markovian jump systems. This book aims at graduate and postgraduate students and for researchers in all engineering disciplines, including mechanical engineering, electrical engineering and applied mathematics, control engineering, signal processing, process control, control theory and robotics.