A unique text covering basic and advanced concepts of optimization theory and methods for process systems engineers. With examples illustrating key concepts and algorithms, and exercises involving theoretical derivations, numerical problems and modeling systems, it is ideal for single-semester, graduate courses in process systems engineering.
Based on the author's forty years of teaching experience, this unique textbook covers both basic and advanced concepts of optimization theory and methods for process systems engineers. Topics covered include continuous, discrete and logic optimization (linear, nonlinear, mixed-integer and generalized disjunctive programming), optimization under uncertainty (stochastic programming and flexibility analysis), and decomposition techniques (Lagrangean and Benders decomposition). Assuming only a basic background in calculus and linear algebra, it enables easy understanding of mathematical reasoning, and numerous examples throughout illustrate key concepts and algorithms. End-of-chapter exercises involving theoretical derivations and small numerical problems, as well as in modeling systems like GAMS, enhance understanding and help put knowledge into practice. Accompanied by two appendices containing web links to modeling systems and models related to applications in PSE, this is an essential text for single-semester, graduate courses in process systems engineering in departments of chemical engineering.
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. - Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory - Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems - Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
Energy Optimization in Process Systems and Fuel Cells, Second Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry. This second edition contains substantial revisions, with particular focus on the rapid progress in the field of fuel cells, related energy theory, and recent advances in the optimization and control of fuel cell systems.
This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.
Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.
Precision motion control is strongly required in many fields, such as precision engineering, micromanufacturing, biotechnology, and nanotechnology. Although great achievements have been made in control engineering, it is still challenging to fulfill the desired performance for precision motion control systems. Substantial works have been presented to reveal an increasing trend to apply optimization approaches in precision engineering to obtain the control system parameters. In this book, we present a result of several years of work in the area of advanced optimization for motion control systems. The book is organized into two parts: Part I focuses on the model-based approaches, and Part II presents the data-based approaches. To illustrate the practical appeal of the proposed optimization techniques, theoretical results are verified with practical examples in each chapter. Industrial problems explored in the book are formulated systematically with necessary analysis of the control system synthesis. By virtue of the design and implementation nature, this book can be used as a reference for engineers, researchers, and students who want to utilize control theories to solve the practical control problems. As the methodologies have extensive applicability in many control engineering problems, the research results in the field of optimization can be applied to full-fledged industrial processes, filling in the gap between research and application to achieve a technology frontier increment.
Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.
Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .