Advanced Methods for Knowledge Discovery from Complex Data

Advanced Methods for Knowledge Discovery from Complex Data

Author: Ujjwal Maulik

Publisher: Springer Science & Business Media

Published: 2006-05-06

Total Pages: 375

ISBN-13: 1846282845

DOWNLOAD EBOOK

The growth in the amount of data collected and generated has exploded in recent times with the widespread automation of various day-to-day activities, advances in high-level scienti?c and engineering research and the development of e?cient data collection tools. This has given rise to the need for automa- callyanalyzingthedatainordertoextractknowledgefromit,therebymaking the data potentially more useful. Knowledge discovery and data mining (KDD) is the process of identifying valid, novel, potentially useful and ultimately understandable patterns from massive data repositories. It is a multi-disciplinary topic, drawing from s- eral ?elds including expert systems, machine learning, intelligent databases, knowledge acquisition, case-based reasoning, pattern recognition and stat- tics. Many data mining systems have typically evolved around well-organized database systems (e.g., relational databases) containing relevant information. But, more and more, one ?nds relevant information hidden in unstructured text and in other complex forms. Mining in the domains of the world-wide web, bioinformatics, geoscienti?c data, and spatial and temporal applications comprise some illustrative examples in this regard. Discovery of knowledge, or potentially useful patterns, from such complex data often requires the - plication of advanced techniques that are better able to exploit the nature and representation of the data. Such advanced methods include, among o- ers, graph-based and tree-based approaches to relational learning, sequence mining, link-based classi?cation, Bayesian networks, hidden Markov models, neural networks, kernel-based methods, evolutionary algorithms, rough sets and fuzzy logic, and hybrid systems. Many of these methods are developed in the following chapters.


Advanced Methods for Inconsistent Knowledge Management

Advanced Methods for Inconsistent Knowledge Management

Author: Ngoc Thanh Nguyen

Publisher: Springer Science & Business Media

Published: 2007-09-12

Total Pages: 359

ISBN-13: 1846288894

DOWNLOAD EBOOK

This book is a first. It fills a major gap in the market and provides a wide snapshot of intelligent technologies for inconsistency resolution. The need for this resolution of knowledge inconsistency arises in many practical applications of computer systems. This kind of inconsistency results from the use of various resources of knowledge in realizing practical tasks. These resources are often autonomous and use different mechanisms for processing knowledge about the same real world. This can lead to compatibility problems.


Knowledge Discovery in the Social Sciences

Knowledge Discovery in the Social Sciences

Author: Xiaoling Shu

Publisher: University of California Press

Published: 2020-02-04

Total Pages: 263

ISBN-13: 0520339991

DOWNLOAD EBOOK

Knowledge Discovery in the Social Sciences helps readers find valid, meaningful, and useful information. It is written for researchers and data analysts as well as students who have no prior experience in statistics or computer science. Suitable for a variety of classes—including upper-division courses for undergraduates, introductory courses for graduate students, and courses in data management and advanced statistical methods—the book guides readers in the application of data mining techniques and illustrates the significance of newly discovered knowledge. Readers will learn to: • appreciate the role of data mining in scientific research • develop an understanding of fundamental concepts of data mining and knowledge discovery • use software to carry out data mining tasks • select and assess appropriate models to ensure findings are valid and meaningful • develop basic skills in data preparation, data mining, model selection, and validation • apply concepts with end-of-chapter exercises and review summaries


Data Mining and Knowledge Discovery Handbook

Data Mining and Knowledge Discovery Handbook

Author: Oded Maimon

Publisher: Springer Science & Business Media

Published: 2010-09-10

Total Pages: 1269

ISBN-13: 0387098232

DOWNLOAD EBOOK

This book organizes key concepts, theories, standards, methodologies, trends, challenges and applications of data mining and knowledge discovery in databases. It first surveys, then provides comprehensive yet concise algorithmic descriptions of methods, including classic methods plus the extensions and novel methods developed recently. It also gives in-depth descriptions of data mining applications in various interdisciplinary industries.


Data Science, Learning by Latent Structures, and Knowledge Discovery

Data Science, Learning by Latent Structures, and Knowledge Discovery

Author: Berthold Lausen

Publisher: Springer

Published: 2015-05-06

Total Pages: 552

ISBN-13: 3662449838

DOWNLOAD EBOOK

This volume comprises papers dedicated to data science and the extraction of knowledge from many types of data: structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering and pattern recognition methods; strategies for modeling complex data and mining large data sets; applications of advanced methods in specific domains of practice. The contributions offer interesting applications to various disciplines such as psychology, biology, medical and health sciences; economics, marketing, banking and finance; engineering; geography and geology; archeology, sociology, educational sciences, linguistics and musicology; library science. The book contains the selected and peer-reviewed papers presented during the European Conference on Data Analysis (ECDA 2013) which was jointly held by the German Classification Society (GfKl) and the French-speaking Classification Society (SFC) in July 2013 at the University of Luxembourg.


Advanced Methods for Knowledge Discovery from Complex Data

Advanced Methods for Knowledge Discovery from Complex Data

Author: Ujjwal Maulik

Publisher: Springer

Published: 2005-11-09

Total Pages: 0

ISBN-13: 9781852339890

DOWNLOAD EBOOK

The growth in the amount of data collected and generated has exploded in recent times with the widespread automation of various day-to-day activities, advances in high-level scienti?c and engineering research and the development of e?cient data collection tools. This has given rise to the need for automa- callyanalyzingthedatainordertoextractknowledgefromit,therebymaking the data potentially more useful. Knowledge discovery and data mining (KDD) is the process of identifying valid, novel, potentially useful and ultimately understandable patterns from massive data repositories. It is a multi-disciplinary topic, drawing from s- eral ?elds including expert systems, machine learning, intelligent databases, knowledge acquisition, case-based reasoning, pattern recognition and stat- tics. Many data mining systems have typically evolved around well-organized database systems (e.g., relational databases) containing relevant information. But, more and more, one ?nds relevant information hidden in unstructured text and in other complex forms. Mining in the domains of the world-wide web, bioinformatics, geoscienti?c data, and spatial and temporal applications comprise some illustrative examples in this regard. Discovery of knowledge, or potentially useful patterns, from such complex data often requires the - plication of advanced techniques that are better able to exploit the nature and representation of the data. Such advanced methods include, among o- ers, graph-based and tree-based approaches to relational learning, sequence mining, link-based classi?cation, Bayesian networks, hidden Markov models, neural networks, kernel-based methods, evolutionary algorithms, rough sets and fuzzy logic, and hybrid systems. Many of these methods are developed in the following chapters.


Research Methods: Concepts, Methodologies, Tools, and Applications

Research Methods: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2015-01-31

Total Pages: 2107

ISBN-13: 1466674571

DOWNLOAD EBOOK

Across a variety of disciplines, data and statistics form the backbone of knowledge. To ensure the reliability and validity of data, appropriate measures must be taken in conducting studies and reporting findings. Research Methods: Concepts, Methodologies, Tools, and Applications compiles chapters on key considerations in the management, development, and distribution of data. With its focus on both fundamental concepts and advanced topics, this multi-volume reference work will be a valuable addition to researchers, scholars, and students of science, mathematics, and engineering.


From Data and Information Analysis to Knowledge Engineering

From Data and Information Analysis to Knowledge Engineering

Author: Myra Spiliopoulou

Publisher: Springer Science & Business Media

Published: 2006-02-09

Total Pages: 788

ISBN-13: 9783540313137

DOWNLOAD EBOOK

This volume collects revised versions of papers presented at the 29th Annual Conference of the Gesellschaft für Klassifikation, the German Classification Society, held at the Otto-von-Guericke-University of Magdeburg, Germany, in March 2005. In addition to traditional subjects like Classification, Clustering, and Data Analysis, converage extends to a wide range of topics relating to Computer Science: Text Mining, Web Mining, Fuzzy Data Analysis, IT Security, Adaptivity and Personalization, and Visualization.


Mathematical Linguistics

Mathematical Linguistics

Author: Andras Kornai

Publisher: Springer Science & Business Media

Published: 2007-12-16

Total Pages: 300

ISBN-13: 1846289866

DOWNLOAD EBOOK

Mathematical Linguistics introduces the mathematical foundations of linguistics to computer scientists, engineers, and mathematicians interested in natural language processing. The book presents linguistics as a cumulative body of knowledge from the ground up: no prior knowledge of linguistics is assumed. As the first textbook of its kind, this book is useful for those in information science and in natural language technologies.