Advanced Materials Science and Engineering of Carbon

Advanced Materials Science and Engineering of Carbon

Author: Michio Inagaki

Publisher: Butterworth-Heinemann

Published: 2013-09-25

Total Pages: 0

ISBN-13: 9780124077898

DOWNLOAD EBOOK

Carbon materials are exceptionally diverse in their preparation, structure, texture, and applications. In Advanced Materials Science and Engineering of Carbon, noted carbon scientist Michio Inagaki and his coauthors cover the most recent advances in carbon materials, including new techniques and processes, carbon materials synthesis, and up-to-date descriptions of current carbon-based materials, trends and applications. Beginning with the synthesis and preparation of nanocarbons, carbon nanotubes, and graphenes, the book then reviews recently developed carbonization techniques, such as templating, electrospinning, foaming, stress graphitization, and the formation of glass-like carbon. The last third of the book is devoted to applications, featuring coverage of carbon materials for energy storage, electrochemical capacitors, lithium-ion rechargeable batteries, and adsorptive storage of hydrogen and methane for environmental protection, photocatalysis, spilled oil recovery, and nuclear applications of isotropic high-density graphite.


Materials Science and Engineering for the 1990s

Materials Science and Engineering for the 1990s

Author: National Research Council

Publisher: National Academies Press

Published: 1989-02-01

Total Pages: 322

ISBN-13: 0309039282

DOWNLOAD EBOOK

Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.


Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications

Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications

Author: Raghvendra Singh Yadav

Publisher: Elsevier

Published: 2020-10-29

Total Pages: 212

ISBN-13: 0128212918

DOWNLOAD EBOOK

Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications presents recent developments in advanced spinel ferrite nanocomposites for electromagnetic interference shielding, including microwave absorption applications. The book includes the basics of shielding mechanisms, synthesis of advanced nanocomposites, and characterization, as well as results analysis. It also discusses the relationship between nanocomposite structure and physical properties. The book systematically explores how spinel ferrite nanoparticle composites are utilized with polymer, carbon source materials (carbon nanotube, graphene, etc.), metal nanoparticles, metal oxide nanoparticles, hard ferrite nanoparticles, glass, rubber, wood, fabrics/textiles, and cement/concrete in the development of advanced spinel ferrite nanocomposites for electromagnetic interference shielding application. Academics, scientists, engineers, students, and industrial researchers will find this book beneficial. - Provides an overview of recent developments on advanced spinel ferrite nanocomposites for electromagnetic interference shielding - Outlines fundamental concepts of electromagnetic shielding mechanisms in nanocomposites - Explores the design of a variety of nanocomposites, discussion on their structure and physical properties, used for electromagnetic shielding applications


Advanced Materials in Automotive Engineering

Advanced Materials in Automotive Engineering

Author: Jason Rowe

Publisher: Elsevier

Published: 2012-02-21

Total Pages: 353

ISBN-13: 0857095463

DOWNLOAD EBOOK

The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials.Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesium alloys for lightweight powertrains and automotive bodies, and polymer and composite moulding technologies. The final chapters then consider a range of design and manufacturing issues that need to be addressed when working with advanced materials, including the design of advanced automotive body structures and closures, technologies for reducing noise, vibration and harshness, joining systems, and the recycling of automotive materials.With its distinguished editor and international team of contributors, Advanced materials in automotive engineering is an invaluable guide for all those involved in the engineering, design or analysis of motor vehicle bodies and components, as well as all students of automotive design and engineering. - Explores the development, potential and impact of using advanced materials for improved fuel economy, enhanced safety and effective mission control in the automotive industry - Provides a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications - Covers a range of design ideas and manufacturing issues that arise when working with advanced materials, including technologies for reducing noise, vibration and harshness, and the recycling of automotive materials


Advanced Materials and Structural Engineering

Advanced Materials and Structural Engineering

Author: Jong Wan Hu

Publisher: CRC Press

Published: 2016-02-03

Total Pages: 1014

ISBN-13: 1315683024

DOWNLOAD EBOOK

The ICAMEST 2015 Conference covered new developments in advanced materials and engineering structural technology. Applications in civil, mechanical, industrial and material science are covered in this book. Providing high-quality, scholarly research, addressing developments, applications and implications in the field of structural health monitoring, construction safety and management, sensors and measurements. This volume contains new models for nonlinear structural analysis and applications of modeling identification. Furthermore, advanced chemical materials are discussed with applications in mechanical and civil engineering and for the maintenance of new materials. In addition, a new system of pressure regulating and water conveyance based on small and middle hydropower stations is discussed. An experimental investigation of the ultimate strength and behavior of the three types of steel tubular K-joints was presented. Furthermore, real-time and frequency linear and nonlinear modeling performance of materials of structures contents were concluded with the notion of a fully brittle material, and this approach is implemented in the book by outlining a finite-element method for the prediction of the construction performance and cracking patterns of arbitrary structural concrete forms. This book is an ideal reference for practicing engineers in material, mechanical and civil engineering and consultants (design, construction, maintenance), and can also be used as a reference for students in mechanical and civil engineering courses.


Materials Research to Meet 21st-Century Defense Needs

Materials Research to Meet 21st-Century Defense Needs

Author: National Research Council

Publisher: National Academies Press

Published: 2003-03-25

Total Pages: 660

ISBN-13: 0309087007

DOWNLOAD EBOOK

In order to achieve the revolutionary new defense capabilities offered by materials science and engineering, innovative management to reduce the risks associated with translating research results will be needed along with the R&D. While payoff is expected to be high from the promising areas of materials research, many of the benefits are likely to be evolutionary. Nevertheless, failure to invest in more speculative areas of research could lead to undesired technological surprises. Basic research in physics, chemistry, biology, and materials science will provide the seeds for potentially revolutionary technologies later in the 21st century.