How can a smartwatch help patients with diabetes manage their disease? Why can’t patients find out prices for surgeries and other procedures before they happen? How can researchers speed up the decade-long process of drug development? How will "Precision Medicine" impact patient care outside of cancer? What can doctors, hospitals, and health systems do to ensure they are maximizing high-value care? How can healthcare entrepreneurs find success in this data-driven market? A revolution is transforming the $10 trillion healthcare landscape, promising greater transparency, improved efficiency, and new ways of delivering care. This new landscape presents tremendous opportunity for those who are ready to embrace the data-driven reality. Having the right data and knowing how to use it will be the key to success in the healthcare market in the future. We are already starting to see the impacts in drug development, precision medicine, and how patients with rare diseases are diagnosed and treated. Startups are launched every week to fill an unmet need and address the current problems in the healthcare system. Digital devices and artificial intelligence are helping doctors do their jobs faster and with more accuracy. MoneyBall Medicine: Thriving in the New Data-Driven Healthcare Market, which includes interviews with dozens of healthcare leaders, describes the business challenges and opportunities arising for those working in one of the most vibrant sectors of the world’s economy. Doctors, hospital administrators, health information technology directors, and entrepreneurs need to adapt to the changes effecting healthcare today in order to succeed in the new, cost-conscious and value-based environment of the future. The authors map out many of the changes taking place, describe how they are impacting everyone from patients to researchers to insurers, and outline some predictions for the healthcare industry in the years to come.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Bioinformatics has evolved significantly in the era of post genomics and big data. Huge advancements were made toward storing, handling, mining, comparing, extracting, clustering and analysis as well as visualization of big macromolecular data using novel computational approaches, machine and deep learning methods, and web-based server tools. There are extensively ongoing world-wide efforts to build the resources for regional hosting, organized and structured access and improving the pre-existing bioinformatics tools to efficiently and meaningfully analyze day-to-day increasing big data. This book intends to provide the reader with updates and progress on genomic data analysis, data modeling and network-based system tools.
This book constitutes the proceedings of the 19th International Conference on Speech and Computer, SPECOM 2017, held in Hatfield, UK, in September 2017. The 80 papers presented in this volume were carefully reviewed and selected from 150 submissions. The papers present current research in the area of computer speech processing (recognition, synthesis, understanding etc.) and related domains (including signal processing, language and text processing, computational paralinguistics, multi-modal speech processing, human-computer interaction).
This book outlines 11 courses and 15 research topics in bioinformatics, based on curriculums and talks in a graduate summer school on bioinformatics that was held in Tsinghua University. The courses include: Basics for Bioinformatics, Basic Statistics for Bioinformatics, Topics in Computational Genomics, Statistical Methods in Bioinformatics, Algorithms in Computational Biology, Multivariate Statistical Methods in Bioinformatics Research, Association Analysis for Human Diseases: Methods and Examples, Data Mining and Knowledge Discovery Methods with Case Examples, Applied Bioinformatics Tools, Foundations for the Study of Structure and Function of Proteins, Computational Systems Biology Approaches for Deciphering Traditional Chinese Medicine, and Advanced Topics in Bioinformatics and Computational Biology. This book can serve as not only a primer for beginners in bioinformatics, but also a highly summarized yet systematic reference book for researchers in this field. Rui Jiang and Xuegong Zhang are both professors at the Department of Automation, Tsinghua University, China. Professor Michael Q. Zhang works at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi
Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques