Optical Fiber Sensors

Optical Fiber Sensors

Author: Ginu Rajan

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 894

ISBN-13: 1351831240

DOWNLOAD EBOOK

Optical Fiber Sensors: Advanced Techniques and Applications describes the physical principles of, and latest developments in, optical fiber sensors. Providing a fundamental understanding of the design, operation, and practical applications of fiber optic sensing systems, this book: Discusses new and emerging areas of research including photonic crystal fiber sensors, micro- and nanofiber sensing, liquid crystal photonics, acousto-optic effects in fiber, and fiber laser-based sensing Covers well-established areas such as surface plasmon resonance sensors, interferometric fiber sensors, polymer fiber sensors, Bragg gratings in polymer and silica fibers, and distributed fiber sensors Explores humidity sensing applications, smart structure applications, and medical applications, supplying detailed examples of the various fiber optic sensing technologies in use Optical Fiber Sensors: Advanced Techniques and Applications draws upon the extensive academic and industrial experience of its contributing authors to deliver a comprehensive introduction to optical fiber sensors with a strong practical focus suitable for undergraduate and graduate students as well as scientists and engineers working in the field.


Advanced Fiber Sensing Technologies

Advanced Fiber Sensing Technologies

Author: Lei Wei

Publisher: Springer Nature

Published: 2020-06-30

Total Pages: 307

ISBN-13: 9811555079

DOWNLOAD EBOOK

Fiber sensing technologies have enabled both fundamental studies and a wide spectrum of applications in every aspect of life. This book highlights the recent advancement in fiber sensing technologies based on newly developed sensing mechanisms, advanced fiber structures, and functional materials. In particular, the integration of functional materials with different electrical, optical, thermal, or mechanical properties into a single fiber offers a wealth of new opportunities in sensing. The book covers the major developments in novel fiber materials, such as semiconductors, metals, polymers, soft glasses, and carbon materials, as well as the sensing applications based on both single fiber and multi-dimensional fiber arrays for temperature, light, strain, vibration, electric and magnetic fields, hazardous chemicals, gases, and physiological signals.


Fiber Optic Sensors

Fiber Optic Sensors

Author: Eric Udd

Publisher: John Wiley & Sons

Published: 2011-07-18

Total Pages: 514

ISBN-13: 0470126841

DOWNLOAD EBOOK

Since the technology has moved strongly into a number of different areas a textbook of this sort could be used by a wide variety of academic departments including physics, electrical engineering, mechanical engineering, civil engineering, aerospace engineering and bioengineering. To make the second edition as widely appealing as possible a series of significant upgrades were made. 1. The book is structured to support a variety of academic programs and it can also be used as a general reference by practicing engineers and scientists. 2. The introductory chapter has been revised to outline the new content of the second edition and provide a overview of the current status of fiber optic sensor technology. 3. A new, extensive chapter has been added covering fiber optic grating sensor technology and its application to aerospace, civil structures, oil and gas and power generating applications. 4. A second new chapter has been added on the emerging field of biomedical fiber optic sensors. This is one of the most rapidly growing fields of use for fiber optic sensors and with rising health costs and medical advances promises to be an important area for many years to come.


Advanced Fiber Optics

Advanced Fiber Optics

Author: Luc Thevenaz

Publisher: EPFL Press

Published: 2011-04-04

Total Pages: 424

ISBN-13: 9781439835173

DOWNLOAD EBOOK

This book provides a comprehensive treatment of the field of modern fiber optics, beginning with the basics of the field summarized in an introductory chapter. Expert contributors then topics such as polarization effects in optical fibers; photonic crystal fibers; highly-doped optical fibers; non-linear effects; amplification and lasing in optical fibers; supercontinuum generation, Rayleigh and inelastic scattering with applications to sensing; optical fiber point sensors, and polymer optical-fiber-based sensors.


Fiber Optic Sensors

Fiber Optic Sensors

Author: David A. Krohn

Publisher: Isa

Published: 1992

Total Pages: 270

ISBN-13: 9781556170102

DOWNLOAD EBOOK

Aims to provide a solid overall background in fibre optic sensors and discusses mechanisms and configurations for a wide range of applications for measurement and analysis. The author also discusses both sides of the case for fibre optic sensors, including sensitivity and dynamic response.


Structural Monitoring with Fiber Optic Technology

Structural Monitoring with Fiber Optic Technology

Author: Raymond M. Measures

Publisher: Academic Press

Published: 2001

Total Pages: 738

ISBN-13: 9780124874305

DOWNLOAD EBOOK

This book is the first to address the field of structurally integrated fiber optic sensors. Fiber optic sensors embedded within materials and systems are able to measure a variety of parameters (i.e. temperature, vibration, deformation, strain, etc.) that allows for real time non-destructive evaluation. Examples include the following: monitoring structural fatigue in aging aircraft or loads in bridge structures. In more advanced applications, fiber optic sensors control actuators that allow materials to adapt to their environment. This gives rise to the names, "smart," "intelligent," and/or "adaptive" materials or structures. Structural Monitoring with Fiber Optic Technology is the firs single author book on the new field of fiber optic structural sensing. As such it provides: coverage of the fundamentals of the technology, a coherent and systematic discussion on the most important aspects of the subject, a broad view of the subject, while retaining a degree of focus on those advances most significant in terms of their future potential, particularly in regard to broad implementation of the technology. The book provides an introduction to the relevant value to structural monitoring. It also highlights the advantages of fiber optic based sensors over conventional electrical measurement technology. The book richly illustrates the subject matter with 615 figures and provides many examples of fiber optic structural sensing, including a detailed overview of a number of major field site applications. Most of these large scale applications are drawn from the civil engineering community as they have been the first to strongly embrace fiber optic structural monitoring. This is especiallytrue for bridges, where innovative new designs and the use of fiber reinforced polymer composite materials to replace steel represents a major advance that is expected to revolutionize the construction industry. Examples include new bridges, which are serving as testbeds for these new materials and are instrumented with arrays of fiber optic structural sensors. In one case, this state-of-the-art monitoring system permits engineers at a distant site to track the response of the bridge to traffic loads and keep an eye on the long term performance of the new materials. Fiber optic structural sensing technology is equally applicable to other industrial sectors, such as the aerospace and marine industries. Indeed, several examples of ships being instrumented with arrays of fiber optic sensors are also included. * The author directed one of the leading laboratories in the development of this technology and its application to civil engineering * Provides a strong, concise foundation in the basics of the technology * Includes many examples of the application of the technology, including many major field site case studies * Richly illustrated with 615 figures, many redrawn to make them easier to understand; also includes over 600 references * Written in a style designed to help the reader unfamiliar with fiber optic technology appreciate what can be accomplished with this new form of structural monitoring


Fundamentals of Optical Fiber Sensors

Fundamentals of Optical Fiber Sensors

Author: Zujie Fang

Publisher: John Wiley & Sons

Published: 2012-08-10

Total Pages: 494

ISBN-13: 1118381734

DOWNLOAD EBOOK

This book describes the latest development in optical fiber devices, and their applications to sensor technology. Optical fiber sensors, an important application of the optical fiber, have experienced fast development, and attracted wide attentions in basic science as well as in practical applications. Sensing is often likened to human sense organs. Optical fiber can not only transport information acquired by sensors at high speed and large volume, but also can play the roles of sensing element itself. Compared with electric and other types of sensors, fiber sensor technology has unique merits. It has advantages over conventional bulky optic sensors, such as combination of sensing and signal transportation, smaller size, and possibility of building distributed systems. Fiber sensor technology has been used in various areas of industry, transportation, communication, security and defense, as well as daily life. Its importance has been growing with the advancement of the technology and the expansion of the scope of its application, a growth this book fully describes.


Fiber-Optic Fabry-Perot Sensors

Fiber-Optic Fabry-Perot Sensors

Author: Yun-Jiang Rao

Publisher: CRC Press

Published: 2017-04-27

Total Pages: 239

ISBN-13: 1351647326

DOWNLOAD EBOOK

The authors deliver a complete overview of fiber-optic Fabry-Perot (FFP) sensing technology, integrating the knowledge and tools of multiple fields including optics, sensing, micromachining, instrumentation, physics, and materials science. The main chapters discuss operating principles, microstructures, fabrication methods, signal demodulation, and instrumentation. This treatment spans the full range of structures (intrinsic/extrinsic, multimode fiber vs single-mode fibers), as well as advanced micromachining technologies and major interrogating and multiplexing methods for the formation of multi-point, quasi-distributed sensing networks. Readers will also gain a summary of state-of-the-art applications in oil, gas, and electricity industries, aerospace technology, and biomedicine. Yun-Jiang Rao is Dean of the School of Communication & Information Engineering, and Director of the Key Lab of Optical Fiber Sensing & Communications at the University of Electronic Science and Technology of China. Zeng-Ling Ran and Yuan Gong are both associate professors at the Optical Fiber Technology Research Laboratory of the University of Electronic Science and Technology of China.


Lab-on-Fiber Technology

Lab-on-Fiber Technology

Author: Andrea Cusano

Publisher: Springer

Published: 2014-07-29

Total Pages: 377

ISBN-13: 3319069985

DOWNLOAD EBOOK

This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the “lab-on-fiber” technology. Inspired by the well-established "lab on-a-chip" concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications. Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate description of the main developments and achievements in the lab-on-fiber technology roadmap, also highlighting the new perspectives and challenges to be faced. This book is essential for scientists interested in the cutting-edge fiber optic technology, but also for graduate students.


Optical Fiber Sensor Technology

Optical Fiber Sensor Technology

Author: L.S. Grattan

Publisher: Springer

Published: 1999-04-30

Total Pages: 336

ISBN-13: 9780412844201

DOWNLOAD EBOOK

Environmental and chemical sensors in optical fiber sensor technology The nature of the environment in which we live and work, and the precarious state of many aspects of the natural environment, has been a major lesson for scientists over the last few decades. Public awareness of the issues involved is high, and often coupled with a scepticism of the ability of the scientist and engineer to provide an adequate, or even rapid solution to the preservation of the environment before further damage is done, and to achieve this with a mini mum of expenditure. Monitoring of the various aspects of the environment, whether it be external or internal to ourselves and involving chemical, physical or biomedical parameters is an essential process for the well-being of mankind and of the individual. Legis lative requirements set new standards for measurement and control all around us, which must be met by the most appropriate of the technologies available, commensurate with the costs involved. Optical fiber sensor technology has a major part to play in this process, both to complement existing technologies and to promote new solutions to difficult measurement issues. The developments in new sources and detectors covering wider ranges of the electromagnetic spectrum, with higher sensitivity, allow the use of techniques that some time ago would have been considered inappropriate or lacking in sufficient sensitivity.