This guide to Excel focuses on three areas--least squares, Fourier transformation, and digital simulation. It illustrates the techniques with detailed examples, many drawn from the scientific literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. De Levie is affiliated with Bowdoin College. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com).
The complete guide to Excel 2016, from Mr. Spreadsheet himself Whether you are just starting out or an Excel novice, the Excel 2016 Bible is your comprehensive, go-to guide for all your Excel 2016 needs. Whether you use Excel at work or at home, you will be guided through the powerful new features and capabilities by expert author and Excel Guru John Walkenbach to take full advantage of what the updated version offers. Learn to incorporate templates, implement formulas, create pivot tables, analyze data, and much more. Navigate this powerful tool for business, home management, technical work, and much more with the only resource you need, Excel 2016 Bible. Create functional spreadsheets that work Master formulas, formatting, pivot tables, and more Get acquainted with Excel 2016's new features and tools Customize downloadable templates and worksheets Whether you need a walkthrough tutorial or an easy-to-navigate desk reference, the Excel 2016 Bible has you covered with complete coverage and clear expert guidance.
This book offers a comprehensive and readable introduction to modern business and data analytics. It is based on the use of Excel, a tool that virtually all students and professionals have access to. The explanations are focused on understanding the techniques and their proper application, and are supplemented by a wealth of in-chapter and end-of-chapter exercises. In addition to the general statistical methods, the book also includes Monte Carlo simulation and optimization. The second edition has been thoroughly revised: new topics, exercises and examples have been added, and the readability has been further improved. The book is primarily intended for students in business, economics and government, as well as professionals, who need a more rigorous introduction to business and data analytics – yet also need to learn the topic quickly and without overly academic explanations.
Data Science gets thrown around in the press like it'smagic. Major retailers are predicting everything from when theircustomers are pregnant to when they want a new pair of ChuckTaylors. It's a brave new world where seemingly meaningless datacan be transformed into valuable insight to drive smart businessdecisions. But how does one exactly do data science? Do you have to hireone of these priests of the dark arts, the "data scientist," toextract this gold from your data? Nope. Data science is little more than using straight-forward steps toprocess raw data into actionable insight. And in DataSmart, author and data scientist John Foreman will show you howthat's done within the familiar environment of aspreadsheet. Why a spreadsheet? It's comfortable! You get to look at the dataevery step of the way, building confidence as you learn the tricksof the trade. Plus, spreadsheets are a vendor-neutral place tolearn data science without the hype. But don't let the Excel sheets fool you. This is a book forthose serious about learning the analytic techniques, the math andthe magic, behind big data. Each chapter will cover a different technique in aspreadsheet so you can follow along: Mathematical optimization, including non-linear programming andgenetic algorithms Clustering via k-means, spherical k-means, and graphmodularity Data mining in graphs, such as outlier detection Supervised AI through logistic regression, ensemble models, andbag-of-words models Forecasting, seasonal adjustments, and prediction intervalsthrough monte carlo simulation Moving from spreadsheets into the R programming language You get your hands dirty as you work alongside John through eachtechnique. But never fear, the topics are readily applicable andthe author laces humor throughout. You'll even learnwhat a dead squirrel has to do with optimization modeling, whichyou no doubt are dying to know.
Combining an easygoing style with an emphasis on practical applications, this expanded second edition focuses on the numerical analysis of experimental data encountered in the physical sciences. It discusses least squares, Fourier transformation, digital simulation, and more.
Annotation. Definitions, Questions, and Useful Functions: Where to Find Things and What To Do1. Introduction2. Describing Data3. Hypothesis Testing4. Analysis of Variance5. Calibration.
The majority of modern instruments are computerised and provide incredible amounts of data. Methods that take advantage of the flood of data are now available; importantly they do not emulate 'graph paper analyses' on the computer. Modern computational methods are able to give us insights into data, but analysis or data fitting in chemistry requires the quantitative understanding of chemical processes. The results of this analysis allows the modelling and prediction of processes under new conditions, therefore saving on extensive experimentation. Practical Data Analysis in Chemistry exemplifies every aspect of theory applicable to data analysis using a short program in a Matlab or Excel spreadsheet, enabling the reader to study the programs, play with them and observe what happens. Suitable data are generated for each example in short routines, this ensuring a clear understanding of the data structure. Chapter 2 includes a brief introduction to matrix algebra and its implementation in Matlab and Excel while Chapter 3 covers the theory required for the modelling of chemical processes. This is followed by an introduction to linear and non-linear least-squares fitting, each demonstrated with typical applications. Finally Chapter 5 comprises a collection of several methods for model-free data analyses.* Includes a solid introduction to the simulation of equilibrium processes and the simulation of complex kinetic processes.* Provides examples of routines that are easily adapted to the processes investigated by the reader* 'Model-based' analysis (linear and non-linear regression) and 'model-free' analysis are covered
This book introduces the use of statistics to solve a variety of problems in exercise science and health and provides readers with a solid foundation for future research and data analysis. Statistics for Exercise Science and Health with Microsoft Office Excel: Aids readers in analyzing their own data using the presented statistical techniques combined with Excel Features comprehensive coverage of hypothesis testing and regression models to facilitate modeling in sports science Utilizes Excel to enhance reader competency in data analysis and experimental designs Includes coverage of both binomial and poison distributions with applications in exercise science and health Provides solved examples and plentiful practice exercises throughout in addition to case studies to illustrate the discussed analytical techniques Contains all needed definitions and formulas to aid readers in understanding different statistical concepts and developing the needed skills to solve research problems
Mathematics for Physical Chemistry, Fifth Edition includes exercises that enable readers to test their understanding and put theory into practice. Chapters are constructed around a sequence of mathematical topics, progressing gradually into more advanced material, before discussing key mathematical skills, including the analysis of experimental data and—new to this edition—complex variables. Includes additional new content on Mathematica and its advanced applications. Drawing on the experience of its expert authors, this book is the ideal supplementary text for practicing chemists and students wanting to sharpen their mathematics skills and understanding of key mathematical concepts for applications across physical chemistry. - Includes updated coverage of key topics, including a review of general algebra and an introduction to group theory - Features previews, objectives, and numerous examples and problems throughout the text to aid learning - Provides chemistry-specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics - Includes new chapters on complex variables and Mathematica for advanced applications